|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Daniel L. Schmoldt , H. Michael RauscherPublisher: Chapman and Hall Imprint: Chapman and Hall Edition: 1996 ed. Dimensions: Width: 15.50cm , Height: 2.30cm , Length: 23.50cm Weight: 1.660kg ISBN: 9780412019210ISBN 10: 0412019213 Pages: 386 Publication Date: 31 March 1996 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 AI and Natural Resource Management.- 1.1 Natural Resources.- 1.2 Resource Management.- 1.3 Knowledge: A Historical Framework.- 1.4 Artificial Intelligence.- 1.5 Knowledge-Based Systems.- 1.6 Some Potential Benefits of Knowledge-Based Systems.- 1.7 Limitations of Knowledge-Based Systems.- 1.8 Suitable Application Areas.- 1.9 Summary.- 2 Knowledge-Based Systems: Representation and Search.- 2.1 An Overview of KBS Organization.- 2.2 The Knowledge Base and Knowledge Representation.- 2.3 Working Memory.- 2.4 Search: Inference and Control.- 2.5 Knowledge-Based System Architectures.- 2.6 Summary and Additional Readings.- 3 Other Knowledge System Components.- 3.1 Explanation and Justification.- 3.2 User Interface.- 3.3 Learning Capabilities.- 3.4 Interfacing to Conventional Programs and Data Files.- 3.5 Inexact Reasoning and Uncertainty.- 3.6 Summary and Additional Readings.- 4 Planning the Application.- 4.1 Parallelism and Cycling in the Development Process.- 4.2 Alternative Development Methods.- 4.3 Problem Definition.- 4.4 Summary.- 5 Knowledge Acquisition.- 5.1 Knowledge Acquisition in Overview.- 5.2 Surface Versus Deep Knowledge.- 5.3 Knowledge Acquisition Strategies.- 5.4 Creating a Domain Ontology.- 5.5 Acquisition Methods.- 5.6 Domain Ontology and Acquisition Methods.- 5.7 Knowledge Acquisition Scenarios.- 5.8 Knowledge Acquisition Guidelines.- 5.9 Expert Biases and Eliciting Uncertain Knowledge.- 5.10 Summary and Additional Readings.- 6 Designing the Application.- 6.1 Application Design = Knowledge Model + Human Factors Model.- 6.2 Pre-Implementation Topics.- 6.3 Prototyping.- 6.4 Summary.- 7 Programming Knowledge Systems in Prolog.- 7.1 Why Prolog?.- 7.2 Introduction to Prolog.- 7.3 Summary and Additional Readings.- 8 An Initial Prototype Using Native PROLOG.- 8.1 Knowledge-Based System Architecture.- 8.2 The Domain Level.- 8.3 The Tactical Control Level.- 8.4 System Control Level.- 8.5 Putting It All Together.- 8.6 From Native Prolog to Meta-PROLOG Programming.- 8.7 Summary.- 9 A PROLOG Toolkit Approach to Developing Forest Management Knowledge-Based Systems.- 9.1 A KBS Toolkit.- 9.2 DSSTOOLS System Architecture.- 9.3 Domain Level.- 9.4 Tactical Control Level.- 9.5 System Control Level.- 9.6 Summary.- 10 System Evaluation and Delivery.- 10.1 System Evaluation.- 10.2 Delivery.- 10.3 Summary.- Appendix A Roots of Artificial Intelligence.- A.1 A Definition of Artificial Intelligence.- A.2 Dreams of Intelligent Artifacts.- A.2.1 Ancient Dreams.- A.2.2 Modern Nightmares.- A.3 Realization.- A.3.1 Realize What?.- A.3.2 Mind as a Tool.- A.4 Knowledge.- A.4.1 Group Knowledge.- A.4.2 Hierarchical Structure.- A.4.3 Chunks.- A.4.4 Representation of Chunks.- A.4.4.1 Frames and Semantic Networks.- A.4.4.2 State Space.- A.4.4.3 Artificial Neural Networks.- A.4.4.4 Rules.- A.4.4.5 Threaded Chunks.- A.5 Goals.- A.6 Reaching the Goal.- A.6.1 Generate-and-Test.- A.6.2 Goal Reduction.- A.6.3 State-Space Search.- A.6.4 Genetic Algorithms and Emergent Behavior.- A.7 Interfacing, or Conversing with the Statue.- A.8 Testing and Conclusion.- Biliography.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |