|
![]() |
|||
|
||||
OverviewThe worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine. With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. Full Product DetailsAuthor: Michael Lysaght , Thomas J. Webster (Associate Professor, Division of Engineering and Department of Orthopaedics, Brown University, USA) , M LysaghtPublisher: Elsevier Science & Technology Imprint: Woodhead Publishing Ltd Dimensions: Width: 15.60cm , Height: 1.70cm , Length: 23.40cm Weight: 0.440kg ISBN: 9780081015001ISBN 10: 0081015003 Pages: 320 Publication Date: 30 October 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsUndoubtedly a useful resource, it would be well placed in the biotechnology section of any university library., Materials World Author InformationDr. Michael Lysaght was the Founder and Director Emeritus of Brown University, USA's Center for Biomedical Engineering, and a retired member of the Brown Faculty. He sadly passed away before he could see this finished book and remains a widely recognized and well-respected figure in the field of biomedical engineering for his contributions to organ replacement technology. Dr Thomas J. Webster is an associate professor for the Division of Engineering and Department of Orthopaedics at Brown University, USA. He directs the Nanomedicine laboratory which designs, synthesizes, and evaluates nanomaterials for various implant applications and is noted for his work in this area. Tab Content 6Author Website:Countries AvailableAll regions |