|
![]() |
|||
|
||||
OverviewThis volume contains the Proceedings of the AMS Special Session on Biological Fluid Dynamics: Modeling, Computation, and Applications, held on October 13, 2012, at Tulane University, New Orleans, Louisiana. In recent years, there has been increasing interest in the development and application of advanced computational techniques for simulating fluid motion driven by immersed flexible structures. That interest is motivated, in large part, by the multitude of applications in physiology and biology. In some biological systems, fluid motion is driven by active biological tissues, which are typically constructed of fibers that are surrounded by fluid. Not only do the fibers hold the tissues together, they also transmit forces that ultimately result in fluid motion. In other examples, the fluid may flow through conduits such as blood vessels or airways that are flexible or active. That is, those conduits may react to and affect the fluid dynamics. This volume responds to the widespread interest among mathematicians, biologists, and engineers in fluid-structure interactions problems. Included are expository and review articles in biological fluid dynamics. Applications that are considered include ciliary motion, upside-down jellyfish, biological feedback in the kidney, peristalsis and dynamic suction pumping, and platelet cohesion and adhesion. Full Product DetailsAuthor: Anita T. Layton , Sarah D. OlsonPublisher: American Mathematical Society Imprint: American Mathematical Society Volume: 628 Weight: 0.050kg ISBN: 9780821898505ISBN 10: 0821898507 Pages: 240 Publication Date: 30 December 2014 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable ![]() The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationAnita T. Layton, Duke University, Durham, NC, USA Sarah D. Olson, Worcester Polytechnic Institute, MA, USA. Tab Content 6Author Website:Countries AvailableAll regions |