|
![]() |
|||
|
||||
OverviewCredit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties. Full Product DetailsAuthor: Lean Yu , Shouyang Wang , Kin Keung Lai , Ligang ZhouPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2008 ed. Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 1.210kg ISBN: 9783540778028ISBN 10: 3540778020 Pages: 244 Publication Date: 03 June 2008 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsCredit Risk Analysis with Computational Intelligence: An Analytical Survey.- Credit Risk Analysis with Computational Intelligence: A Review.- Unitary SVM Models with Optimal Parameter Selection for Credit Risk Evaluation.- Credit Risk Assessment Using a Nearest-Point-Algorithm-based SVM with Design of Experiment for Parameter Selection.- Credit Risk Evaluation Using SVM with Direct Search for Parameter Selection.- Hybridizing SVM and Other Computational Intelligent Techniques for Credit Risk Analysis.- Hybridizing Rough Sets and SVM for Credit Risk Evaluation.- A Least Squares Fuzzy SVM Approach to Credit Risk Assessment.- Evaluating Credit Risk with a Bilateral-Weighted Fuzzy SVM Model.- Evolving Least Squares SVM for Credit Risk Analysis.- SVM Ensemble Learning for Credit Risk Analysis.- Credit Risk Evaluation Using a Multistage SVM Ensemble Learning Approach.- Credit Risk Analysis with a SVM-based Metamodeling Ensemble Approach.- An Evolutionary-Programming-Based Knowledge Ensemble Model for Business Credit Risk Analysis.- An Intelligent-Agent-Based Multicriteria Fuzzy Group Decision Making Model for Credit Risk Analysis.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |