|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Momiao XiongPublisher: Taylor & Francis Inc Imprint: CRC Press Inc Weight: 0.616kg ISBN: 9780815387107ISBN 10: 0815387105 Pages: 766 Publication Date: 19 June 2018 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsPreface Author 1. Genotype–Phenotype Network Analysis 2. Causal Analysis and Network Biology 3. Wearable Computing and Genetic Analysis of Function-Valued Traits 4. RNA-Seq Data Analysis 5. Methylation Data Analysis 6. Imaging and Genomics 7. From Association Analysis to Integrated Causal Inference References IndexReviews"""I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in ‘omics’ problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book."" - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 ""In his book, Professor Xiong introduces, discusses, and implements a rich variety of statistical tools that can be used to study large-scale features obtained from the human brain and genome, map neural and genetic signatures to behavioral and disease outcomes, and make causal enquiries into their relationships. The scope of the book is comprehensive, the concepts deep, and technicalities oftentimes mathematically heavy...the book discusses statistical concepts and devices that readers may find useful in studying general problems in human neuroscience and human genetics."" - Oliver Y. Chén, Journal of the American Statistical Association, March 2020 ""I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in ‘omics’ problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book."" - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 ""In his book, Professor Xiong introduces, discusses, and implements a rich variety of statistical tools that can be used to study large-scale features obtained from the human brain and genome, map neural and genetic signatures to behavioral and disease outcomes, and make causal enquiries into their relationships. The scope of the book is comprehensive, the concepts deep, and technicalities oftentimes mathematically heavy...the book discusses statistical concepts and devices that readers may find useful in studying general problems in human neuroscience and human genetics."" - Oliver Y. Chén, Journal of the American Statistical Association, March 2020" I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in 'omics' problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book. - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 In his book, Professor Xiong introduces, discusses, and implements a rich variety of statistical tools that can be used to study large-scale features obtained from the human brain and genome, map neural and genetic signatures to behavioral and disease outcomes, and make causal enquiries into their relationships. The scope of the book is comprehensive, the concepts deep, and technicalities oftentimes mathematically heavy...the book discusses statistical concepts and devices that readers may find useful in studying general problems in human neuroscience and human genetics. - Oliver Y. Chen, Journal of the American Statistical Association, March 2020 I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in 'omics' problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book. - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 In his book, Professor Xiong introduces, discusses, and implements a rich variety of statistical tools that can be used to study large-scale features obtained from the human brain and genome, map neural and genetic signatures to behavioral and disease outcomes, and make causal enquiries into their relationships. The scope of the book is comprehensive, the concepts deep, and technicalities oftentimes mathematically heavy...the book discusses statistical concepts and devices that readers may find useful in studying general problems in human neuroscience and human genetics. - Oliver Y. Chen, Journal of the American Statistical Association, March 2020 I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in 'omics' problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book. - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 In his book, Professor Xiong introduces, discusses, and implements a rich variety of statistical tools that can be used to study large-scale features obtained from the human brain and genome, map neural and genetic signatures to behavioral and disease outcomes, and make causal enquiries into their relationships. The scope of the book is comprehensive, the concepts deep, and technicalities oftentimes mathematically heavy...the book discusses statistical concepts and devices that readers may find useful in studying general problems in human neuroscience and human genetics. - Oliver Y. Chen, Journal of the American Statistical Association, March 2020 I would like to recommend a new option in the library market, Big Data in Omics and Imaging: Integrated Analysis and Causal Inference, written by Momiao Xiong, a Professor of Biostatistics at the University of Texas Health Science Center in Houston. It is an extensive and comprehensive textbook on big data inbiomedical sciences. Indeed, its contents is very valuable, because it concerns the analysis of large-scale datasets, which now regularly occur in computational biology and medicine, in particular in 'omics' problems... The book introduces in detail the currently developed statistical methods and software for big genomic and epi-genomic, wearable biosensors, computing, and image data analysis. It covers important topics in this area, such as: genotype-phenotype network analysis, causal analysis and network biology, wearable computing and genetic analysis of function-valued traits, RNA-seq data analysis, methylation data analysis, imaging, and genomics... It was really interesting and fascinating to go through the pages of the book. It would hold a very valuable position on the home shelf-book or university library; I warmly recommend the book. - Malgorzata Cwiklinska-Jurkowska, ISCB, December 2019 Author InformationMomiao Xiong is a professor of Biostatistics at the University of Texas Health Science Center in Houston where he has worked since 1997. He received his PhD in 1993 from the University of Georgia. Tab Content 6Author Website:Countries AvailableAll regions |