Big Data in Cognitive Science

Author:   Michael N. Jones (Indiana Univetsity, USA)
Publisher:   Taylor & Francis Ltd
ISBN:  

9781138791930


Pages:   374
Publication Date:   15 November 2016
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $116.00 Quantity:  
Add to Cart

Share |

Big Data in Cognitive Science


Add your own review!

Overview

Full Product Details

Author:   Michael N. Jones (Indiana Univetsity, USA)
Publisher:   Taylor & Francis Ltd
Imprint:   Psychology Press Ltd
Dimensions:   Width: 15.20cm , Height: 2.30cm , Length: 22.90cm
Weight:   0.521kg
ISBN:  

9781138791930


ISBN 10:   1138791938
Pages:   374
Publication Date:   15 November 2016
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Developing Cognitive Theory by Mining Large-Scale Naturalistic Data, Michael N. Jones. Sequential Bayesian Updating for Big Data, Zita Oravecz, Matt Huentelman, & Joachim Vandekerckhove. Predicting and Improving Memory Retention: Psychological Theory Matters in the Big Data Era, Michael C. Mozer & Robert V. Lindsey. Tractable Bayesian Teaching, Baxter S. Eaves Jr., April M. Schweinhart, & Patrick Shafto. Social Structure Relates to Linguistic Information Density, David W. Vinson & Rick Dale. Music Tagging and Listening: Testing the Memory Cue Hypothesis in a Collaborative Tagging System, Jared Lorince & Peter M. Todd. Flickr® Distributional Tagspace: Evaluating the Semantic Spaces Emerging from Flickr® Tags Distributions, Marianna Bolognesi. Large-Scale Network Representations of Semantics in the Mental Lexicon, Simon De Deyne, Yoed N. Kenett, David Anaki, Miriam Faust, & Dan Navarro. Individual Differences in Semantic Priming Performance: Insights from the Semantic Priming Project, Melvin J. Yap, Keith A. Hutchison, & Luuan Chin Tan. Small Worlds and Big Data: Examining the Simplification Assumption in Cognitive Modeling, Brendan Johns, Douglas J. K. Mewhort, & Michael N. Jones. Alignment in Web-based Dialogue: Who Aligns, and how Automatic is it? Studies in Big-Data Computational Psycholinguistics, David Reitter. Attention Economies, Information Crowding, and Language Change, Thomas T. Hills, James Adelman, & Takao Noguchi. Dcision by Sampling: Co Connecting Preferences to Real-World Regularities. Christopher Y. Olivola & Nick Chater.Crunching Big Data with Fingertips: How Typists Tune Their Performance Toward the Statistics of Natural Language, Lawrence P. Behmer Jr., & Matthew J. C. Crump. Can Big Data Help Us Understand Human Vision?, Michael J. Tarr & Elissa M. Aminoff.

Reviews

The advent of large-scale naturalistic data holds exciting promise for developing and testing cognitive theories. But while the challenge of collecting such data is no longer a major hurdle, analyzing and making sense of it is. This book, with contributions from pioneers in this effort, is a fantastic resource for cognitive scientists. -Jeffrey L. Elman, Chancellor's Associates Distinguished Professor of Cognitive Science, University of California, San Diego


The advent of large-scale naturalistic data holds exciting promise for developing and testing cognitive theories. But while the challenge of collecting such data is no longer a major hurdle, analyzing and making sense of it is. This book, with contributions from pioneers in this effort, is a fantastic resource for cognitive scientists. -Jeffrey L. Elman, Chancellor's Associates Distinguished Professor of Cognitive Science, University of California, San Diego


The advent of large-scale naturalistic data holds exciting promise for developing and testing cognitive theories. But while the challenge of collecting such data is no longer a major hurdle, analyzing and making sense of it is. This book, with contributions from pioneers in this effort, is a fantastic resource for cognitive scientists. -Jeffrey L. Elman, Chancellor’s Associates Distinguished Professor of Cognitive Science, University of California, San Diego


Author Information

Michael N. Jones is the William and Katherine Estes Professor of Psychology, Cognitive Science, and Informatics at Indiana University, Bloomington, and the Editor-in-Chief of Behavior Research Methods. His research focuses on large-scale computational models of cognition, and statistical methodology for analyzing massive datasets to understand human behavior.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List