Big Data Analytics Using MATLAB: Neural Networks and Applications

Author:   L Abell
Publisher:   Createspace Independent Publishing Platform
ISBN:  

9781976067600


Pages:   438
Publication Date:   04 September 2017
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $77.88 Quantity:  
Add to Cart

Share |

Big Data Analytics Using MATLAB: Neural Networks and Applications


Add your own review!

Overview

Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions. A key tool in big data analytics are the neural networks. MATLAB Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. Deep learning networks include convolutional neural networks (ConvNets, CNNs) and autoencoders for image classification, regression, and feature learning. For small training sets, you can quickly apply deep learning by performing transfer learning with pretrained deep networks. To speed up training on large datasets, you can use Parallel Computing Toolbox to distribute computations and data across multicore processors and GPUs on the desktop, and you can scale up to clusters and clouds (including Amazon EC2 P2 GPU instances) with MATLAB Distributed Computing Server. The Key Features developed in this book are de next: - Deep learning with convolutional neural networks (for classification and regression) and autoencoders (for feature learning) - Transfer learning with pretrained convolutional neural network models - Training and inference with CPUs or multi-GPUs on desktops, clusters, and clouds - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance

Full Product Details

Author:   L Abell
Publisher:   Createspace Independent Publishing Platform
Imprint:   Createspace Independent Publishing Platform
Dimensions:   Width: 20.30cm , Height: 2.30cm , Length: 25.40cm
Weight:   0.864kg
ISBN:  

9781976067600


ISBN 10:   197606760
Pages:   438
Publication Date:   04 September 2017
Audience:   General/trade ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List