|
![]() |
|||
|
||||
OverviewBig data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions.MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox from version 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Big Data tools (Parallel Computing Toolbox).The more important features are the following: -Deep learning, including convolutional neural networks and autoencoders-Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) -Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN)-Unsupervised learning algorithms, including self-organizing maps and competitive layers-Apps for data-fitting, pattern recognition, and clustering-Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance-Simulink blocks for building and evaluating neural networks and for control systems applicationsNeural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. You can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.There are four typical neural networks application areas: function fitting, pattern recognition, clustering, and time-series analysis. This book develops cluster analysis and pattern recognition Full Product DetailsAuthor: C PerezPublisher: Independently Published Imprint: Independently Published Dimensions: Width: 15.20cm , Height: 2.20cm , Length: 22.90cm Weight: 0.572kg ISBN: 9781092678889ISBN 10: 1092678883 Pages: 390 Publication Date: 04 April 2019 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |