Benefits of Bayesian Network Models

Author:   Philippe Weber ,  Christophe Simon
Publisher:   ISTE Ltd and John Wiley & Sons Inc
ISBN:  

9781848219922


Pages:   148
Publication Date:   16 August 2016
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $295.95 Quantity:  
Add to Cart

Share |

Benefits of Bayesian Network Models


Add your own review!

Overview

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Full Product Details

Author:   Philippe Weber ,  Christophe Simon
Publisher:   ISTE Ltd and John Wiley & Sons Inc
Imprint:   ISTE Ltd and John Wiley & Sons Inc
Dimensions:   Width: 15.80cm , Height: 0.90cm , Length: 23.40cm
Weight:   0.231kg
ISBN:  

9781848219922


ISBN 10:   184821992
Pages:   148
Publication Date:   16 August 2016
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Foreword by J.-F. Aubry ix Foreword by L. Portinale xiii Acknowledgments xv Introduction xvii Part 1. Bayesian Networks 1 Chapter 1. Bayesian Networks: a Modeling Formalism for System Dependability 3 1.1. Probabilistic graphical models: BN 5 1.1.1. BN: a formalism to model dependability 5 1.1.2. Inference mechanism 7 1.2. Reliability and joint probability distributions 8 1.2.1. Multi-state system example 8 1.2.2. Joint distribution 9 1.2.3. Reliability computing 9 1.2.4. Factorization 10 1.3. Discussion and conclusion 14 Chapter 2. Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems 17 2.1. Introduction 17 2.2. BN models in the Boolean case 19 2.2.1. BN model from cut-sets 20 2.2.2. BN model from tie-sets 23 2.2.3. BN model from a top-down approach 25 2.2.4. BN model of a bowtie 26 2.3. Standard Boolean gates CPT 29 2.4. Non-deterministic CPT 31 2.5. Industrial applications 38 2.6. Conclusion 41 Chapter 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems 43 3.1. Introduction 43 3.2. BN models in the multi-state case 43 3.2.1. BN model of multi-state systems from tie-sets 44 3.2.2. BN model of multi-state systems from cut-sets 49 3.2.3. BN model of multi-state systems from functional and dysfunctional analysis 52 3.3. Non-deterministic CPT 58 3.4. Industrial applications 59 3.5. Conclusion 62 Part 2. Dynamic Bayesian Networks 65 Chapter 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67 4.1. Introduction 67 4.2. Component modeled by a DBN 69 4.2.1. DBN model of a MC 70 4.2.2. DBN model of non-homogeneous MC 71 4.2.3. Stochastic process with exogenous constraint 72 4.3. Model of a dynamic multi-state system 75 4.4. Discussion on dependent processes 79 4.5. Conclusion 81 Chapter 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System 83 5.1. Introduction 83 5.2. Integrating reliability information into the control 84 5.3. Control integrating reliability modeled by DBN 85 5.3.1. Modeling and controlling an over-actuated system 86 5.3.2. Integrating reliability 88 5.4. Application to a drinking water network 90 5.4.1. DBN modeling 91 5.4.2. Results and discussion 92 5.5. Conclusion 95 5.6. Acknowledgments 96 Conclusion 97 Bibliography 101 Index 113

Reviews

Author Information

Philippe Weber is Professor at the Engineer School of Sciences and Technologies at the University of Lorraine and at the Research Centre for Automatic Control in Nancy, France. His research concerns dependability and is mainly focused on probabilistic graphical models. Christophe Simon is Associate Professor at the Research Centre for Automatic Control in Nancy, France. His research concerns dependability and is mainly focused on modeling engineering and uncertainties.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List