Bayesian Optimization in Action

Author:   Quan Nguyen
Publisher:   Manning Publications
ISBN:  

9781633439078


Pages:   424
Publication Date:   21 November 2023
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $158.37 Quantity:  
Add to Cart

Share |

Bayesian Optimization in Action


Overview

Apply advanced techniques for optimising machine learning processes For machine learning practitioners confident in maths and statistics. Bayesian Optimization in Action shows you how to optimise hyperparameter tuning, A/B testing, and other aspects of the machine learning process, by applying cutting-edge Bayesian techniques. Using clear language, Bayesian Optimization helps pinpoint the best configuration for your machine-learning models with speed and accuracy. With a range of illustrations, and concrete examples, this book proves that Bayesian Optimisation doesn't have to be difficult! Key features include: Train Gaussian processes on both sparse and large data sets Combine Gaussian processes with deep neural networks to make them flexible and expressive Find the most successful strategies for hyperparameter tuning Navigate a search space and identify high-performing regions Apply Bayesian Optimisation to practical use cases such as cost-constrained, multi-objective, and preference optimisation Use PyTorch, GPyTorch, and BoTorch to implement Bayesian optimisation You will get in-depth insights into how Bayesian optimisation works and learn how to implement it with cutting-edge Python libraries. The book's easy-to-reuse code samples will let you hit the ground running by plugging them straight into your own projects! About the technology Experimenting in science and engineering can be costly and time-consuming, especially without a reliable way to narrow down your choices. Bayesian Optimisation helps you identify optimal configurations to pursue in a search space. It uses a Gaussian process and machine learning techniques to model an objective function and quantify the uncertainty of predictions. Whether you're tuning machine learning models, recommending products to customers, or engaging in research, Bayesian Optimisation can help you make better decisions faster.

Full Product Details

Author:   Quan Nguyen
Publisher:   Manning Publications
Imprint:   Manning Publications
Dimensions:   Width: 18.50cm , Height: 1.80cm , Length: 23.50cm
Weight:   0.774kg
ISBN:  

9781633439078


ISBN 10:   1633439070
Pages:   424
Publication Date:   21 November 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Reviews

Author Information

Quan Nguyen is a Python programmer and machine learning enthusiast. He is interested in solving decision-making problems that involve uncertainty. Quan has authored several books on Python programming and scientific computing. He is currently pursuing a PhD degree in Computer Science at Washington University in St. Louis, where he conducts research on Bayesian methods in machine learning.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List