Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd Edition

Author:   Osvaldo Martin
Publisher:   Packt Publishing Limited
Edition:   2nd Revised edition
ISBN:  

9781789341652


Pages:   356
Publication Date:   26 December 2018
Format:   Paperback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $93.12 Quantity:  
Add to Cart

Share |

Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd Edition


Add your own review!

Overview

Bayesian modeling with PyMC3 and exploratory analysis of Bayesian models with ArviZ Key Features A step-by-step guide to conduct Bayesian data analyses using PyMC3 and ArviZ A modern, practical and computational approach to Bayesian statistical modeling A tutorial for Bayesian analysis and best practices with the help of sample problems and practice exercises. Book DescriptionThe second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to. What you will learn Build probabilistic models using the Python library PyMC3 Analyze probabilistic models with the help of ArviZ Acquire the skills required to sanity check models and modify them if necessary Understand the advantages and caveats of hierarchical models Find out how different models can be used to answer different data analysis questions Compare models and choose between alternative ones Discover how different models are unified from a probabilistic perspective Think probabilistically and benefit from the flexibility of the Bayesian framework Who this book is forIf you are a student, data scientist, researcher, or a developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory so no previous statistical knowledge is required, although some experience in using Python and NumPy is expected.

Full Product Details

Author:   Osvaldo Martin
Publisher:   Packt Publishing Limited
Imprint:   Packt Publishing Limited
Edition:   2nd Revised edition
ISBN:  

9781789341652


ISBN 10:   1789341655
Pages:   356
Publication Date:   26 December 2018
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Table of Contents Thinking probabilistically Programming probabilistically Modeling with Linear Regression Generalizing Linear Models Model Comparison Mixture Models Gaussian Processes Inference Engines Where To Go Next?

Reviews

Author Information

Osvaldo Martin is a researcher at The National Scientific and Technical Research Council (CONICET), in Argentina. He has worked on structural bioinformatics of protein, glycans, and RNA molecules. He has experience using Markov Chain Monte Carlo methods to simulate molecular systems and loves to use Python to solve data analysis problems. He has taught courses about structural bioinformatics, data science, and Bayesian data analysis. He was also the head of the organizing committee of PyData San Luis (Argentina) 2017. He is one of the core developers of PyMC3 and ArviZ.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List