Battery Management Systems, Volume III: Physics-Based Methods

Author:   Gregory Plett ,  M. Scott Trimboli
Publisher:   Artech House Publishers
Edition:   Unabridged edition
ISBN:  

9781630819040


Pages:   360
Publication Date:   31 January 2024
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $419.76 Quantity:  
Add to Cart

Share |

Battery Management Systems, Volume III: Physics-Based Methods


Add your own review!

Overview

Full Product Details

Author:   Gregory Plett ,  M. Scott Trimboli
Publisher:   Artech House Publishers
Imprint:   Artech House Publishers
Edition:   Unabridged edition
Dimensions:   Width: 22.00cm , Height: 2.60cm , Length: 28.30cm
Weight:   1.311kg
ISBN:  

9781630819040


ISBN 10:   1630819042
Pages:   360
Publication Date:   31 January 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1. Redundant Parameter Elimination a. Introduction b. Review of BMS definitions and tasks c. Modeling approach #1: Empirical d. Modeling approach #2: Physics-based e. Reducing number of model parameters: method f. Reducing number of model parameters: solid g. Reducing number of model parameters: electrolyte, kinetics h. Summary of reformulated PDEs i. Recovering original electrochemical variables   2. Modeling Electrochemical Impedance a. More detail required at the solid–electrolyte interface b. Ideal interfacial impedance model c. Adding double-layer constant-phase-element behavior d. Adding solid-diffusivity CPE behavior e. Seeking full-cell impedance model f. Full cell impedance response g. Nyquist (Cole–Cole) plots h. MATLAB toolbox   3. Model Parameter Identification a. Introduction b. Overall strategy and roadmap c. OCP testing d. Initial data processing e. Missing-data and inaccessible-lithium problems f. Practical computation of differential capacity g. Multi-species-multi-reaction (MSMR) model h. Converting dis/charge data to OCP i. Testing the methods using simulation data j. Application to physical half cells k. Correlating with cell-level OCV l. Pulse-resistance testing m. Frequency-response testing, temperature/SOC dependence n. Distribution of relaxation times o. DRT applied to cell impedance data p. Steady-state testing q. Lab-test procedures; data calibration; terminal resistance r. Initialization of optimizations s. Lumped-parameter constraints t. MATLAB optimization scheme u. Cost functions; results v. MATLAB toolbox   4. Efficient Time-Domain Simulation a. Introduction and context b. Convert continuous-time to discrete-time frequency response c. Illustrating frequency-response conversion method d. Hybrid realization algorithm (HRA) e. Final form of A , B , C , and D f. Sample results g. Simulating a (single) cell in the time domain, near a setpoint h. Simulation results near a ROM setpoint i. Simulating over a wide operating range (output blending) j. Simulation results over wide operating range k. Simulating constant voltage and constant power l. Simulating battery packs m. MATLAB toolbox   5. Degradation Modeling and Identification a. Introduction b. Limitations on lithium-ion battery performance c. Solid-electrolyte interphase (SEI) film growth d. Identifying SEI-model parameter values e. Lithium plating f. MATLAB toolbox   6. Electrochemical Internal Variables Estimation a. Introduction b. Review of sequential probabilistic inference c. The eight-step process d. Approximating statistics with sigma points e. SPKF with the output-blended model f. Sample simulation results g. MATLAB toolbox   7. Optimal Fast Charge a. Fast-charge control problem b. Limitations on fast-charging lithium-ion batteries c. Models of degradation mechanisms d. Model predictive control (MPC) – the basics e. Applying MPC to fast-charge of lithium ion cells f. MPC implementation g. Simulation results h. MATLAB toolbox   8. Power Limits Estimation a. Survey on methods of power-limit calculation b. MPC – a new paradigm for predictive power estimation c. Power limit estimation: An MPC-inspired method d. Power limit estimation – comparison of ECM & PBM e. Summary and Next Steps f. MATLAB toolbox

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

wl

Shopping Cart
Your cart is empty
Shopping cart
Mailing List