Banach Embedding Properties of Non-commutative L-p Spaces

Author:   U. Haagerup ,  H.P. Rosenthal ,  F.A. Sukochev
Publisher:   American Mathematical Society
Edition:   illustrated edition
Volume:   v. 163
ISBN:  

9780821832714


Pages:   68
Publication Date:   01 May 2003
Format:   Paperback
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Our Price $94.60 Quantity:  
Add to Cart

Share |

Banach Embedding Properties of Non-commutative L-p Spaces


Add your own review!

Overview

Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite). Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$. Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically. The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$. It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram. It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$.

Full Product Details

Author:   U. Haagerup ,  H.P. Rosenthal ,  F.A. Sukochev
Publisher:   American Mathematical Society
Imprint:   American Mathematical Society
Edition:   illustrated edition
Volume:   v. 163
Weight:   0.170kg
ISBN:  

9780821832714


ISBN 10:   0821832719
Pages:   68
Publication Date:   01 May 2003
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Temporarily unavailable   Availability explained
The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you.

Table of Contents

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List