|
|
|||
|
||||
OverviewThis book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the attractor. This is done in both the autonomous (time independent) and non-autonomous (time dependent) framework in four distinct levels of approximation: the upper semicontinuity, lower semicontinuity, topological structural stability and geometrical structural stability. This book is aimed at graduate students and researchers interested in dissipative dynamical systems and stability theory, and requires only a basic background in metric spaces, functional analysis and, for the applications, techniques of ordinary and partial differential equations. Full Product DetailsAuthor: Matheus C. Bortolan , Alexandre N. Carvalho , Jose A. LangaPublisher: American Mathematical Society Imprint: American Mathematical Society Weight: 0.650kg ISBN: 9781470453084ISBN 10: 1470453088 Pages: 254 Publication Date: 30 July 2020 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsAutonomous theory: Semigroups and global attractors Upper and lower semicontinuity Topological structural stability of attractors Neighborhood of a critical element Morse-Smale semigroups Non-autonomous theory: Non-autonomous dynamical systems and their attractors Upper and lower semicontinuity Topological structural stability Neighborhood of a global hyperbolic solution Non-autonomous Morse-Smale dynamical systems Bibliography List of figures Index.ReviewsAuthor InformationMatheus C. Bortolan, Universidade Federal de Santa Catarina, Florianopolis SC, Brazil. Alexandre N. Carvalho, Universidade de Sao Paulo, Sao Carlos SP, Brazil. Jose A. Langa, Universidad de Sevilla, Seville, Spain. Tab Content 6Author Website:Countries AvailableAll regions |
||||