|
|
|||
|
||||
OverviewThis book considers the Cauchy problem for a system of ordinary differential equations with a small parameter, filling in areas that have not been extensively covered in the existing literature. The well-known types of equations, such as the regularly perturbed Cauchy problem and the Tikhonov problem, are dealt with, but new ones are also treated, such as the quasiregular Cauchy problem, and the Cauchy problem with double singularity. For each type of problem, series are constructed which generalise the well-known series of Poincare and Vasilyeva--Imanaliyev. It is shown that these series are asymptotic expansions of the solution, or converge to the solution on a segment, semiaxis or asymptotically large time intervals. Theorems are proved providing numerical estimates for the remainder term of the asymptotics, the time interval of the solution existence, and the small parameter values. This volume will be of interest to researchers and graduate students specialising in ordinary differential equations. Full Product DetailsAuthor: R.P. KuzminaPublisher: Kluwer Academic Publishers Imprint: Kluwer Academic Publishers Edition: 2000 ed. Volume: 512 Dimensions: Width: 15.50cm , Height: 2.20cm , Length: 23.50cm Weight: 1.560kg ISBN: 9780792364009ISBN 10: 0792364007 Pages: 364 Publication Date: 30 September 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsFrom the reviews: The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ... . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ... . (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008) From the reviews: The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ... . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ... . (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008) From the reviews: <p> The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations a ] . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students a ] .a (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008) "From the reviews: ""The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations … . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students … .” (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)" Author InformationTab Content 6Author Website:Countries AvailableAll regions |
||||