Asymptotic Methods for Ordinary Differential Equations

Author:   R.P. Kuzmina
Publisher:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   512
ISBN:  

9789048155002


Pages:   364
Publication Date:   15 December 2010
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $472.56 Quantity:  
Add to Cart

Share |

Asymptotic Methods for Ordinary Differential Equations


Overview

This book considers the Cauchy problem for a system of ordinary differential equations with a small parameter, filling in areas that have not been extensively covered in the existing literature. The well-known types of equations, such as the regularly perturbed Cauchy problem and the Tikhonov problem, are dealt with, but new ones are also treated, such as the quasiregular Cauchy problem, and the Cauchy problem with double singularity. For each type of problem, series are constructed which generalise the well-known series of Poincare and Vasilyeva-Imanaliyev. It is shown that these series are asymptotic expansions of the solution, or converge to the solution on a segment, semiaxis or asymptotically large time intervals. Theorems are proved providing numerical estimates for the remainder term of the asymptotics, the time interval of the solution existence, and the small parameter values. Audience: This volume will be of interest to researchers and graduate students specialising in ordinary differential equations.

Full Product Details

Author:   R.P. Kuzmina
Publisher:   Springer
Imprint:   Springer
Edition:   Softcover reprint of hardcover 1st ed. 2000
Volume:   512
Dimensions:   Width: 16.00cm , Height: 1.90cm , Length: 24.00cm
Weight:   0.575kg
ISBN:  

9789048155002


ISBN 10:   9048155002
Pages:   364
Publication Date:   15 December 2010
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

1. Solution Expansions of the Quasiregular Cauchy Problem.- 2. The van der Pol Problem.- 3. The Boundary Functions Method.- 4. Proof of Theorems 28.1–28.4.- 5. The Method of Two Parameters.- 6. The Motion of a Gyroscope Mounted in Gimbals.- 7. Supplement.- 8. The Boundary Functions Method.- 9. The Method of Two Parameters.

Reviews

"From the reviews: ""The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations … . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students … .” (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)"


From the reviews: The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ! . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ! . (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)


From the reviews: The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ... . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ... . (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)


From the reviews: The book is devoted to the study of the Cauchy problem for the systems of ordinary differential equations ... . We emphasize, finally, that the book contains many explicitly or analytically or numerically solved examples. Summarizing it is an interesting and well-written book that provides good estimates to the solution of the Cauchy problem posed for the systems of very general nonlinear ODE-s. It will be useful for anyone interested in analysis, especially to specialists in ODE-s, physicists, engineers and students ... . (Jeno Hegedus, Acta Scientiarum Mathematicarum, Vol. 74, 2008)


Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List