Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis

Author:   Subhendu Kumar Pani ,  Sujata Dash ,  Wellington P. dos Santos ,  Syed Ahmad Chan Bukhari
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2022
ISBN:  

9783030797553


Pages:   405
Publication Date:   15 December 2022
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $336.35 Quantity:  
Add to Cart

Share |

Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis


Add your own review!

Overview

This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. In the past, it was a common requirement to have domain experts for developing models for biomedical or healthcare. However, recent advances in representation learning algorithms allow us to automatically learn the pattern and representation of the given data for the development of such models. Medical Image Mining, a novel research area (due to its large amount of medical images) are increasingly generated and stored digitally. These images are mainly in the form of: computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new and useful information that can be helpful for scientists and biomedical practitioners. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence..

Full Product Details

Author:   Subhendu Kumar Pani ,  Sujata Dash ,  Wellington P. dos Santos ,  Syed Ahmad Chan Bukhari
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2022
Weight:   0.658kg
ISBN:  

9783030797553


ISBN 10:   3030797554
Pages:   405
Publication Date:   15 December 2022
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Chapter 1: Artificial Intelligence (AI) and Big Data Analytics for COVID-19 PandemicPramit Pandit , K. N. Krishnamurthy and Bishvajit Bakshi Chapter 2: COVID-19 TravelCover: Post-lockdown Smart Transportation Management System for COVID-19 Sandeep Tiwari, Hari Mohan Rai, Barnini Goswami , Shreya Majumdar, Kajal Gupta Chapter 3:  Diverse techniques applied for effective diagnosis of COVID 19  Charles Oluwaseun Adetunji, Olugbemi Tope Olaniyan, Olulope Olufemi Ajayi, Osikemekha Anthony Anani,  Ruth Ebunoluwa Bodunrinde,  Abel Inobeme Chapter 4: A Review on Detection of Covid-19 Patients using Deep Learning Techniques  Babita Majhi , Rahul Thangeda , Ritanjali Majhi Chapter 5: Internet of Health Things (IoHT) for COVID 19 Charles Oluwaseun Adetunji, Olugbemi Tope Olaniyan, Olulope Olufemi Ajayi, Osikemekha Anthony Anani,  Ruth Ebunoluwa Bodunrinde,  Abel Inobeme Chapter 6: Diagnosis for COVID-19 Ashish Tripathi , Anand Bhushan Pandey , Arun Kumar Singh , K. K. Mishra , Prem Chand Vashist Chapter 7: IoT in Combating Covid 19 Pandemics: Lessons for Developing Countries Oyekola Peter, Suchismita Swain, Kamalakanta Muduli, Adimuthu Ramasamy Chapter 8: Machine learning approaches for COVID 19 pandemic Charles Oluwaseun Adetunji, Olugbemi Tope Olaniyan, Olulope Olufemi Ajayi, Osikemekha Anthony Anani,  Ruth Ebunoluwa Bodunrinde,  Abel Inobeme Chapter 9: Smart sensing for COVID 19 Pandemic Charles Oluwaseun Adetunji, Olugbemi Tope Olaniyan, Olulope Olufemi Ajayi, Osikemekha Anthony Anani,  Ruth Ebunoluwa Bodunrinde,  Abel Inobeme Chapter 10: eHealth, mHealth and Telemedicine for COVID-19 pandemic Charles Oluwaseun Adetunji, Olugbemi Tope Olaniyan, Olulope Olufemi Ajayi, Osikemekha Anthony Anani,  Ruth Ebunoluwa Bodunrinde,  Abel Inobeme   Chapter 11:  Prediction of care for patients in a Covid-19 pandemic situation based on haematological parameters  Arianne Sarmento Torcate , Flávio Secco Fonseca , Antônio Ravely. T. Lima , Flaviano Palmeira Santos , Tássia D. Muniz S. Oliveira , Maíra Araújo de Santana , Juliana Carneiro Gomes , Clarisse Lins de Lima , Valter Augusto de Freitas Barbosa , Ricardo Emmanuel de Souza , Wellington Pinheiro dos Santos Chapter 12: Bioinformatics in Diagnosis of Covid-19 Sanjana Sharma, Saanya Aroura, Archana Gupta, Anjali Priyadarshini Chapter 13: Predicting the Covid-19 Morbidity Outspread and Mortality Using Deep Learning Techniques Bhimavarapu Usharani Chapter 14: LSTM -CNN Deep learning Based Hybrid system for real time COVID-19 data analysis and prediction using Twitter data Sitanath Biswas, Sujata Dash Chapter 15: An intelligent tool to support diagnosis of Covid-19 by texture analysis of computerized tomography x-ray images and machine learning Maíra Araújo de Santana , Juliana Carneiro Gomes , Valter Augusto de Freitas Barbosa , Clarisse Lins de Lima , Jonathan Bandeira , Mêuser Jorge Silva Valença , Ricardo Emmanuel de Souza, Aras Ismael Masood , Wellington Pinheiro dos Santos Chapter 16: Analysis of Blockchain Backed Covid19 Data Tadepalli Sarada Kiranmayee, Ruppa K. Thulasiram Chapter 17: Intelligent systems for dengue, chikungunya and zika temporal and spatio-temporal forecasting: a contribution and a brief review Clarisse Lins de Lima , Ana Clara Gomes da Silva , Cecilia Cordeiro da Silva , Giselle Machado Magalhães Moreno , Abel Guilhermino da Silva Filho , Anwar Musah , Aisha Aldosery , Livia Dutra , Tercio Ambrizzi , Iuri Valério Graciano Borges , Merve Tunali , Selma Basibuyuk , Orhan Yenigün , Tiago Lima Massoni , Kate Jones , Luiza Campos , Patty Kostkova , Wellington Pinheiro dos Santos Chapter 18: Machine learning approaches for temporal and spatio-temporal Covid-19 forecasting: a brief review and a contribution Ana Clara Gomes da Silva , Clarisse Lins de Lima , Cecilia Cordeiro da Silva , Giselle Machado Magalhães Moreno , Eduardo Luiz Silva , Gabriel Souza Marques , Lucas Job Brito de Araújo , Luiz Antônio Albuquerque Júnior , Samuel Barbosa Jatobá de Souza , Maíra Araújo de Santana , Juliana Carneiro Gomes , Valter Augusto de Freitas Barbosa , Anwar Musah , Patty Kostkova , Abel Guilhermino da Silva Filho , Wellington Pinheiro dos Santos Chapter 19: Image Reconstruction for COVID-19 using Multi-frequency Electrical Impedance Tomography Julia Grasiela Busarello Wolff, David William Cordeiro Marcondes, Wellington Pinheiro dos Santos, Pedro Bertemes-Filho

Reviews

The book, nonetheless, is written clearly and easy to follow. Rather than deep into the methodology, it leans toward analytical applications with several real data analyses and case studies ... which should facilitate engaging a broader audience and sparking interest. ... this book provides a good introduction and overview of the computational approaches in COVID- 19-related research ... which may be of particular value to those interested in applying ML/AI solutions to public health and medicine. (Yen-Chen Anne Feng, Biometrics, Vol. 78 (4), December, 2022)


Author Information

Subhendu Pani is Professor and Principal at Krupajal Computer Academy, Odisha, India. His research interests include Data mining, Big Data Analysis, web data analytics, Fuzzy Decision Making and Computational Intelligence. He has been published in more than 150 international publications, five authored books, fifteen edited and forthcoming books, and twenty book chapters. He is a fellow in SSARSC and life member in IE, ISTE, ISCA, OBA, OMS, SMIACSIT, SMUACEE, and CSI. Sujata Dash is Associate Professor of Computer Science at North Orissa University in the Department of Computer Application, Baripada, India. She is a recipient of Titular Fellowship from Association of Commonwealth Universities, UK. She has worked as a visiting professor of Computer Science Department of University of Manitoba, Canada. She has published more than 170 technical papers. Wellington P. dos Santos is Associate Professor, Department of Biomedical Engineering, Federal University of Pernambuco (UFPE), Recife, Brazil. PhD in Electrical Engineering from the Federal University of Campina Grande (UFCG), Campina Grande, Master in Electrical Engineering and Graduated in Electronic Electrical Engineering from UFPE, Recife, Brazil. His main research interests are: diagnostic support systems, digital epidemiology, applied neuroscience, serious games in health, and artificial intelligence applied to health. Syed Ahmad Chan Bukhari is Assistant Professor and Director of Healthcare Informatics at St. John's University, New York. He received his Ph.D. in Computer Science from the University of New Brunswick, Canada, and then went on to complete his postdoctoral fellowship at Yale School of Medicine, where he worked with Stanford University, Centre of Expanded Data Annotation and Retrieval (CEDAR) to develop data submission pipelines to improve scientific experimental reproducibility. Francesco Flammini is Professor of Computer Science at Mälardalen University, Sweden. He has been an Associate Professor leading the Cyber-Physical Systems environment at Linnaeus University, Sweden. He has worked for fifteen years in private and public companies, including Ansaldo STS (now Hitachi Rail) and IPZS (Italian State Mint and Polygraphic Institute), leading international projects addressing intelligent transportation and infrastructure security.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List