|
|
|||
|
||||
Overview(AI) digital data gather technology predicts food consumer behavior's main barriersWhat are the main barriers to food industry? When the food manufacturer applies (AI) big data gather technology to predict food consumer behavior? The barriers include that the food manufacturer / provider needs to decide whether when the right time is applied to the right (AI) digital big data prediction tool channel to find the right food consumers to be chose to full food consumption satisfactory questionnaires, how to gather multi-class food consumption classifiers on real-world food consumers transactional data from the food sale domain consistently to show the critical numbers of different kinds of food items at which the predictive performance most accurate? So, any food manufacturer / provider's advanced in (AI) digital data gather warehousing and management technologies can provide that opportunities for food business to enhance long term relationship with the food providers' clients. However, food industry's (AI) digital data gather aims to improve food customer product targeting, increase food customer loyalty and food purchase probability to the food supplier. To effective identify, understand and satisfy the needs of their food customers, the food suppliers need to develop the right (AI) digital questionnaire questions and find the right food customers to fill every right questions from every digital questionnaire at the right time through the right channel. Above of all these, they will be the barriers when one food supplier expects its (AI) digital data gather questionnaires which can conclude the most accurate prediction concerns any kinds of consumer food product choices. So, such as (AI) digital data prediction model, it is needed to incorporate into the food market segmentation, food customer targeting, and food challenging decisions with the goal of maximizing the total food customer lifetime. For example, (AI) big data gather transaction data is reasonable and accurate for building predictive models. Transaction data can be electronically collected and readily made available for data mining in lot quantity at minimum extra costs.Suggestion to apply (AI) prototypes of food customer profiles method to predict food customer behavioral changes. Prototypes of food customer profiles mean to be extracted from the discovered bins and multi-class classifies models are built using those prototypes. The learned models can than be used to predict the class of food customer profiles ( e.g. restaurants, school canteens, supermarkets etc. food suppliers) based on their food purchases. The approach is validated on the case study of a food retail and food service company operating in food and beverages market. Full Product DetailsAuthor: Johnny Ch LokPublisher: Independently Published Imprint: Independently Published Dimensions: Width: 21.60cm , Height: 2.60cm , Length: 27.90cm Weight: 1.279kg ISBN: 9781799170785ISBN 10: 1799170780 Pages: 400 Publication Date: 09 March 2019 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Temporarily unavailable The supplier advises that this item is temporarily unavailable. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out to you. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||