Artificial Intelligence for Healthcare: Interdisciplinary Partnerships for Analytics-driven Improvements in a Post-COVID World

Author:   Sze-chuan Suen (University of Southern California) ,  David Scheinker (Stanford University, California) ,  Eva Enns (University of Minnesota)
Publisher:   Cambridge University Press
Edition:   New edition
ISBN:  

9781108836739


Pages:   350
Publication Date:   05 May 2022
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $181.10 Quantity:  
Add to Cart

Share |

Artificial Intelligence for Healthcare: Interdisciplinary Partnerships for Analytics-driven Improvements in a Post-COVID World


Add your own review!

Overview

Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR.

Full Product Details

Author:   Sze-chuan Suen (University of Southern California) ,  David Scheinker (Stanford University, California) ,  Eva Enns (University of Minnesota)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press
Edition:   New edition
Dimensions:   Width: 15.70cm , Height: 1.70cm , Length: 23.50cm
Weight:   0.437kg
ISBN:  

9781108836739


ISBN 10:   1108836739
Pages:   350
Publication Date:   05 May 2022
Audience:   College/higher education ,  Postgraduate, Research & Scholarly
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Sze-chuan Suen is an assistant professor in the Daniel J. Epstein Department of Industrial and Systems Engineering at the University of Southern California. She received her PhD in the department of Management Science and Engineering from Stanford University in 2016. Her research interests include developing applied mathematical models to identify epidemiological trends and evaluating health policies to support informed decision-making. Her work in health policy modeling draws from a variety of techniques, including simulation, dynamic systems modeling, Markov decision processes, cost-effectiveness analysis, and decision analysis. Her previous work has examined the optimal management of tuberculosis, HIV, and chronic diseases. David Scheinker is a Clinical Associate Professor of Pediatrics in the Stanford School of Medicine and the Executive Director of Systems Design and Collaborative Research at the Stanford Lucile Packard Children's Hospital. He is the Founder and Director of SURF Stanford Medicine (surf.stanford.edu), a group that brings together students and faculty from the university with physicians, nurses, and administrators from the hospitals to improve the quality of care using operations research methodology. His research focuses on applications of operations research in healthcare. Previously, he was a Joint Research Fellow at The MIT Sloan School of Management and Massachusetts General Hospital. Eva Enns is an Associate Professor in the Division of Health Policy and Management at the University of Minnesota School of Public Health. She received her PhD in Electrical Engineering from Stanford University in 2012 and her dissertation was awarded the Decision Sciences Institute Elwood S. Buffa Doctoral Dissertation Award in 2013. In her research, she applies engineering concepts, including simulation modelling, optimization, cost-effectiveness analysis, and resource allocation, to help inform policies for the prevention and treatment of infectious diseases. Specific application areas include HIV, sexually transmitted infections, antimicrobial resistance, and most recently COVID-19.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List