Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity

Author:   James McKee ,  Chris Smyth
Publisher:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
ISBN:  

9783030800307


Pages:   438
Publication Date:   09 December 2021
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $142.29 Quantity:  
Add to Cart

Share |

Around the Unit Circle: Mahler Measure, Integer Matrices and Roots of Unity


Add your own review!

Overview

Full Product Details

Author:   James McKee ,  Chris Smyth
Publisher:   Springer Nature Switzerland AG
Imprint:   Springer Nature Switzerland AG
Edition:   1st ed. 2021
Weight:   0.700kg
ISBN:  

9783030800307


ISBN 10:   303080030
Pages:   438
Publication Date:   09 December 2021
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Mahler Measures of Polynomials in One Variable.- 2 Mahler Measures of Polynomials in Several Variables.- 3 Dobrowolski's Theorem.- 4 The Schinzel–Zassenhaus Conjecture.- 5 Roots of Unity and Cyclotomic Polynomials.- 6 Cyclotomic Integer Symmetric Matrices I: Tools and Statement of the Classification Theorem.- 7 Cyclotomic Integer Symmetric Matrices II: Proof of the Classification Theorem.- 8 The Set of Cassels Heights.- 9 Cyclotomic Integer Symmetric Matrices Embedded in Toroidal and Cylindrical Tesselations.- 10 The Transfinite Diameter and Conjugate Sets of Algebraic Integers.- 11 Restricted Mahler Measure Results.- 12 The Mahler Measure of Nonreciprocal Polynomials.- 13 Minimal Noncyclotomic Integer Symmetric Matrices.- 14 The Method of Explicit Auxiliary Functions.- 15 The Trace Problem For Integer Symmetric Matrices.- 16 Small-Span Integer Symmetric Matrices.- 17 Symmetrizable Matrices I: Introduction.- 18 Symmetrizable Matrices II: Cyclotomic Symmetrizable Integer Matrices.- 19 Symmetrizable Matrices III: The Trace Problem.- 20 Salem Numbers from Graphs and Interlacing Quotients.- 21 Minimal Polynomials of Integer Symmetric Matrices.- 22 Breaking Symmetry.- A Algebraic Background.- B Combinatorial Background.- C Tools from the Theory of Functions.- D Tables.- References.- Index.

Reviews

“The reader at the graduate level having enough time and energy can learn a lot from this book about the Mahler measure, conjugate sets of algebraic integers, and related results. Some chapters of the book are quite accessible to undergraduate students as well, and may serve as an introduction to their research in this area.” (Arturas Dubickas, Mathematical Reviews, May, 2023) “It contains some material that is unavailable elsewhere. Each chapter is concluded by notes and a glossary of newly introduced definitions. … The reader at the graduate level having enough time and energy from this book can learn a lot about the Mahler measure, conjugate sets of algebraic integers and related results.” (Artūras Dubickas, zbMATH 1486.11003, 2022)


It contains some material that is unavailable elsewhere. Each chapter is concluded by notes and a glossary of newly introduced definitions. ... The reader at the graduate level having enough time and energy from this book can learn a lot about the Mahler measure, conjugate sets of algebraic integers and related results. (Arturas Dubickas, zbMATH 1486.11003, 2022)


Author Information

James McKee is Professor of Pure Mathematics at Royal Holloway, University of London. He is an expert on algorithmic and computational methods in number theory, particularly for elliptic curves, polynomials as well as Pisot and Salem numbers. In recent years his interests have become more combinatorial, and with his students and Smyth he has used structures related to graphs to study algebraic integers through their eigenvalues.Chris Smyth, a professorial fellow in Number Theory at the University of Edinburgh, has a long-standing interest in Mahler measure. This dates from his PhD thesis, where he studied Lehmer’s conjecture for nonreciprocal integer polynomials. He discovered the first known closed formula for a 2-dimensional Mahler measure involving an L-function, leading to a deep study of such formulae by Boyd, Deninger, Rodriguez Villegas and others. He invented the explicit auxiliary function method, which applies semi-infinite linear programming to number-theoretic problems, including to the Mahler measure of totally real polynomials.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List