Arc-Search Techniques for Interior-Point Methods

Author:   Yaguang Yang
Publisher:   Taylor & Francis Ltd
ISBN:  

9780367487287


Pages:   316
Publication Date:   27 November 2020
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $284.00 Quantity:  
Add to Cart

Share |

Arc-Search Techniques for Interior-Point Methods


Add your own review!

Overview

This book discusses an important area of numerical optimization, called interior-point method. This topic has been popular since the 1980s when people gradually realized that all simplex algorithms were not convergent in polynomial time and many interior-point algorithms could be proved to converge in polynomial time. However, for a long time, there was a noticeable gap between theoretical polynomial bounds of the interior-point algorithms and efficiency of these algorithms. Strategies that were important to the computational efficiency became barriers in the proof of good polynomial bounds. The more the strategies were used in algorithms, the worse the polynomial bounds became. To further exacerbate the problem, Mehrotra's predictor-corrector (MPC) algorithm (the most popular and efficient interior-point algorithm until recently) uses all good strategies and fails to prove the convergence. Therefore, MPC does not have polynomiality, a critical issue with the simplex method. This book discusses recent developments that resolves the dilemma. It has three major parts. The first, including Chapters 1, 2, 3, and 4, presents some of the most important algorithms during the development of the interior-point method around the 1990s, most of them are widely known. The main purpose of this part is to explain the dilemma described above by analyzing these algorithms' polynomial bounds and summarizing the computational experience associated with them. The second part, including Chapters 5, 6, 7, and 8, describes how to solve the dilemma step-by-step using arc-search techniques. At the end of this part, a very efficient algorithm with the lowest polynomial bound is presented. The last part, including Chapters 9, 10, 11, and 12, extends arc-search techniques to some more general problems, such as convex quadratic programming, linear complementarity problem, and semi-definite programming.

Full Product Details

Author:   Yaguang Yang
Publisher:   Taylor & Francis Ltd
Imprint:   CRC Press
Weight:   0.739kg
ISBN:  

9780367487287


ISBN 10:   0367487284
Pages:   316
Publication Date:   27 November 2020
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Preface. SECTION I: LINE SEARCH INTERIOR-POINT METHODS FOR LINEAR PROGRAMMING. Introduction. A Potential-Reduction Algorithm for LP. Feasible Path-Following Algorithms for LP. Infeasible Interior-Point Method Algorithms for LP. SECTION II: ARC-SEARCH INTERIOR-POINT METHODS FOR LINEAR PROGRAMMING. A Feasible Arc-Search Algorithm for LP. A MTY-Type Infeasible Arc-Search Algorithm for LP. A Mehrotra-Type Infeasible Arc-Search Algorithm for LP. An O(√nL) Infeasible Arc-Search Algorithms for LP. SECTION III:ARC-SEARCH INTERIOR-POINT METHODS: EXTENSIONS. An Arc-Search Algorithm for Convex Quadratic Programming. An Arc-Search Algorithms for QP with Box Constraints. An Arc-Search Algorithm for LCP. An Arc-Search Algorithm for Semidefinite Programming. References. Index.

Reviews

Author Information

Yaguang Yang received a BSc (1982) and a MSc (1985) from Huazhong University of Science and Technology, China. From 1985 to 1990, he was a lecturer at Zhejiang University in China. In 1996, he received his PhD from the Department of Electrical and Computer Engineering at the University of Maryland, College Park. He proposed and developed arc-search techniques for interior-point methods. He is currently with the US Nuclear Regulatory Commission.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List