|
![]() |
|||
|
||||
OverviewHighlighting modern computational methods, Applied Stochastic Modelling, Second Edition provides students with the practical experience of scientific computing in applied statistics through a range of interesting real-world applications. It also successfully revises standard probability and statistical theory. Along with an updated bibliography and improved figures, this edition offers numerous updates throughout. New to the Second Edition An extended discussion on Bayesian methods A large number of new exercises A new appendix on computational methods The book covers both contemporary and classical aspects of statistics, including survival analysis, Kernel density estimation, Markov chain Monte Carlo, hypothesis testing, regression, bootstrap, and generalised linear models. Although the book can be used without reference to computational programs, the author provides the option of using powerful computational tools for stochastic modelling. All of the data sets and MATLAB and R programs found in the text as well as lecture slides and other ancillary material are available for download at www.crcpress.com Continuing in the bestselling tradition of its predecessor, this textbook remains an excellent resource for teaching students how to fit stochastic models to data. Full Product DetailsAuthor: Byron J.T. Morgan (University of Kent, UK)Publisher: Taylor & Francis Ltd Imprint: CRC Press Edition: 2nd edition Weight: 0.453kg ISBN: 9781138469693ISBN 10: 1138469696 Pages: 368 Publication Date: 06 October 2017 Audience: College/higher education , Tertiary & Higher Education Format: Hardback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsIntroduction and Examples. Basic Model Fitting. Function Optimisation. Basic Likelihood Tools. General Principles. Simulation Techniques. Bayesian Methods and MCMC. General Families of Models. Index of Data Sets. Index of MATLAB Programs. Appendices. Solutions and Comments for Selected Exercises. Bibliography. Index.ReviewsPraise for the First Edition The author's enthusiasm for his subject shines through this book. There are plenty of interesting example data sets ... The book covers much ground in quite a short space ... In conclusion, I like this book and strongly recommend it. It covers many of my favourite topics. In another life, I would have liked to have written it, but Professor Morgan has made a better job if it than I would have done. --Tim Auton, Journal of the Royal Statistical Society I am seriously considering adopting Applied Stochastic Modelling for a graduate course in statistical computation that our department is offering next term. --Jim Albert, Journal of the American Statistical Association ...very well written, fresh in its style, with lots of wonderful examples and problems. --R.P. Dolrow, Technometrics A useful tool for both applied statisticians and stochastic model users of other fields, such as biologists, sociologists, geologists, and economists. --Zentralblatt MATH The book is a delight to read, reflecting the author's enthusiasm for the subject and his wide experience. The layout and presentation of material are excellent. Both for new research students and for experienced researchers needing to update their skills, this is an excellent text and source of reference. --Statistical Methods in Medical Research Praise for the First Edition The author's enthusiasm for his subject shines through this book. There are plenty of interesting example data sets ... The book covers much ground in quite a short space ... In conclusion, I like this book and strongly recommend it. It covers many of my favourite topics. In another life, I would have liked to have written it, but Professor Morgan has made a better job if it than I would have done. -Tim Auton, Journal of the Royal Statistical Society I am seriously considering adopting Applied Stochastic Modelling for a graduate course in statistical computation that our department is offering next term. -Jim Albert, Journal of the American Statistical Association ...very well written, fresh in its style, with lots of wonderful examples and problems. -R.P. Dolrow, Technometrics A useful tool for both applied statisticians and stochastic model users of other fields, such as biologists, sociologists, geologists, and economists. -Zentralblatt MATH The book is a delight to read, reflecting the author's enthusiasm for the subject and his wide experience. The layout and presentation of material are excellent. Both for new research students and for experienced researchers needing to update their skills, this is an excellent text and source of reference. -Statistical Methods in Medical Research Author InformationByron J.T. Morgan Tab Content 6Author Website:Countries AvailableAll regions |