Applied Calculus for Business, Economics, and the Social and Life Sciences, Expanded Edition, Media Update

Author:   Laurence Hoffmann ,  Gerald Bradley ,  David Sobecki ,  Michael Price
Publisher:   McGraw-Hill Education - Europe
Edition:   11th edition
ISBN:  

9780073532370


Pages:   1088
Publication Date:   16 February 2012
Replaced By:   1260260399
Format:   Hardback
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $626.08 Quantity:  
Add to Cart

Share |

Applied Calculus for Business, Economics, and the Social and Life Sciences, Expanded Edition, Media Update


Add your own review!

Overview

Applied Calculus for Business, Economics, and the Social and Life Sciences, Expanded Edition provides a sound, intuitive understanding of the basic concepts students need as they pursue careers in business, economics, and the life and social sciences. Students achieve success using this text as a result of the author's applied and real-world orientation to concepts, problem-solving approach, straight forward and concise writing style, and comprehensive exercise sets. More than 100,000 students worldwide have studied from this text!

Full Product Details

Author:   Laurence Hoffmann ,  Gerald Bradley ,  David Sobecki ,  Michael Price
Publisher:   McGraw-Hill Education - Europe
Imprint:   McGraw Hill Higher Education
Edition:   11th edition
Dimensions:   Width: 23.40cm , Height: 4.10cm , Length: 26.20cm
Weight:   2.046kg
ISBN:  

9780073532370


ISBN 10:   0073532371
Pages:   1088
Publication Date:   16 February 2012
Audience:   College/higher education ,  Tertiary & Higher Education
Replaced By:   1260260399
Format:   Hardback
Publisher's Status:   Active
Availability:   Available To Order   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

Chapter 1: Functions, Graphs, and Limits1.1Functions1.2The Graph of a Function1.3Lines and Linear Functions1.4Functional Models1.5Limits1.6One-Sided Limits and ContinuityChapter 2: Differentiation: Basic Concepts2.1The Derivative2.2Techniques of Differentiation2.3Product and Quotient Rules; Higher-Order Derivatives2.4The Chain Rule2.5Marginal Analysis and Approximations Using Increments2.6Implicit Differentiation and Related RatesChapter 3: Additional Applications of the Derivative3.1 Increasing and Decreasing Functions; Relative Extrema3.2 Concavity and Points of Inflection3.3 Curve Sketching3.4 Optimization; Elasticity of Demand3.5 Additional Applied OptimizationChapter 4: Exponential and Logarithmic Functions4.1 Exponential Functions; Continuous Compounding4.2 Logarithmic Functions4.3 Differentiation of Exponential and Logarithmic Functions4.4 Additional Applications; Exponential ModelsChapter 5: Integration5.1 Indefinite Integration and Differential Equations5.2 Integration by Substitution5.3 The Definite Integral and the Fundamental Theorem of Calculus5.4 Applying Definite Integration: Distribution of Wealth and Average Value5.5 Additional Applications to Business and Economics5.6 Additional Applications to the Life and Social SciencesChapter 6: Additional Topics in Integration6.1 Integration by Parts; Integral Tables6.2 Numerical Integration6.3 Improper IntegralsChapter 7: Calculus of Several Variables7.1 Functions of Several Variables7.2 Partial Derivatives7.3 Optimizing Functions of Two Variables7.4 The Method of Least-Squares7.5 Constrained Optimization: The Method of Lagrange Multipliers7.6 Double IntegralsChapter 8: Trigonometric Functions8.1 Angle Measurement; Trigonometric Functions8.2 Trigonometric Applications Involving Differentiation8.3 Trigonometric Applications Involving IntegrationChapter 9: Differential Equations9.1 Modeling with Differential Equations9.2 First-Order Linear Differential Equations9.3 Additional Applications of Differential Equations9.4 Approximate Solutions of Differential Equations9.5 Difference Equations; The Cobweb ModelChapter 10: Infinite Series and Taylor Series Approximations10.1 Infinite Series; Geometric Series10.2 Tests for Convergence10.3 Functions as Power Series; Taylor SeriesChapter 11: Probability and Calculus11.1 Introduction to Probability; Discrete Random Variables11.2 Continuous Probability Distributions11.3 Expected Value and Variance of Continuous Random Variables10.4 Normal and Poisson Probability DistributionsAppendix A: Algebra ReviewA.1 A Brief Review of AlgebraA.2 Factoring Polynomials and Solving Systems of EquationsA.3 Evaluating Limits with L’Hopital’s RuleA.4 The Summation Notation

Reviews

Author Information

After receiving my undergraduate degree at Harvey Mudd College and my PhD from Caltech, I joined the Mathematics Department at Claremont McKenna College, where I have continued to teach, specializing in calculus, linear algebra, and differential equations. I love to write, and in addition to this text have written published texts on engineering calculus and linear algebra. My wife, Jaqui, and I are active supporters of recording textbooks for the blind and dyslexic. We also travel whenever we get a chance and especially enjoy cruising. Our favorite destinations have been Crete, Barcelona, and Singapore. I’m a lifelong Boston Red Sox, Los Angeles Lakers, and USC Trojan football fan, and write science fiction novels in my spare time. We have two sons, a newborn grandson, and seven cats, although it’s not clear whether we have the cats or they have us. We also raise foster kittens for a local shelter until they are ready to be adopted, and yes, three of our cats are fosters that we could not resist adopting ourselves. I was born and raised in Cleveland, and started college at Bowling Green State University in 1984 majoring in creative writing. Eleven years later, I walked across the graduation stage to receive a PhD in math, a strange journey indeed. After two years at Franklin and Marshall College in Pennsylvania, I came home to Ohio, accepting a tenure-track job at the Hamilton campus of Miami University. I’ve won a number of teaching awards in my career, and while maintaining an active teaching schedule, I now spend an inordinate amount of time writing textbooks and course materials. I’ve written or co-authored either seven or twelve textbooks, depending on how you count them, as well as several solutions manuals and interactive CD-ROMS. After many years as developmental math coordinator at Miami Hamilton, I share the frustration that goes along with low pass rates in the developmental math curriculum. Far too many students end up on the classic Jetson’s-style treadmill, with the abstract nature of the traditional algebra curriculum keeping them from reaching their goals. Like so many instructors across the country, I believe the time is right to move beyond the one-size-fits-all curriculum that treats students the same whether they hope to be an engineer or a pastry chef. “Because we’ve always done it that way” is NOT a good reason to maintain the status quo in our curriculum. Let’s work together to devise alternate pathways that help students to learn more and learn better while hastening their trip into credit-bearing math courses. Since my book (Math in Our World) is written for the Liberal Arts Math and Quantitative Literacy market, I think I’m in the right place at the right time to make a difference in the new and exciting pathways course. I’m in a very happy place right now: my love of teaching meshes perfectly with my childhood dream of writing. (Don’t tell my publisher this – they think I spend 20 hours a day working on textbooks – but I’m working on my first novel in the limited spare time that I have.) I’m also a former coordinator of Ohio Project NExT, as I believe very strongly in helping young college instructors focus on high-quality teaching as a primary career goal. I live in Fairfield, Ohio with my lovely wife Cat and fuzzy dogs Macleod and Tessa. When not teaching or writing, my passions include Ohio State football, Cleveland Indians baseball, heavy metal music, travel, golf, and home improvement. Michael Price is a senior instructor and assistant department head of mathematics at the University of Oregon in Eugene, Oregon. Both his undergraduate and graduate degrees are from the University of Oregon, where has worked as a graduate student and instructor for the last 9 years. Michael has taught courses in introductory and intermediate algebra, up through precalculus, statistics, and three variations of calculus aimed at, respectively, biology/human physiology, business/economics, and mathematics/physical science students. As a coordinator for the precalculus sequence at the U of O and periodically other sequences required for non-math majors, Michael spends a substantial portion of his time developing and reinforcing responsible course material for mathematics service courses. In addition to this textbook, he has also contributed to supplemental materials and reviews of undergraduate texts in mathematics.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List