|
|
|||
|
||||
OverviewNumerous worked examples and exercises highlight this unified treatment of the Hermitian operator theory in its Hilbert space setting. Its simple explanations of difficult subjects make it accessible to undergraduates as well as an ideal self-study guide. Featuring full discussions of first and second order linear differential equations, the text introduces the fundamentals of Hilbert space theory and Hermitian differential operators. It derives the eigenvalues and eigenfunctions of classical Hermitian differential operators, develops the general theory of orthogonal bases in Hilbert space, and offers a comprehensive account of Schr�dinger's equations. In addition, it surveys the Fourier transform as a unitary operator and demonstrates the use of various differentiation and integration techniques. Samuel S. Holland, Jr. is a professor of mathematics at the University of Massachusetts, Amherst. He has kept this text accessible to undergraduates by omitting proofs of some theorems but maintaining the core ideas of crucially important results. Intuitively appealing to students in applied mathematics, physics, and engineering, this volume is also a fine reference for applied mathematicians, physicists, and theoretical engineers. Full Product DetailsAuthor: Samuel S HollandPublisher: Dover Publications Imprint: Dover Publications Weight: 0.635kg ISBN: 9780486789293ISBN 10: 0486789292 Pages: 576 Publication Date: 23 December 2013 Audience: General/trade , General Format: Hardback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||