|
![]() |
|||
|
||||
OverviewSymmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter. Full Product DetailsAuthor: Peter J. OlverPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2nd ed. 1993. 3rd printing 2000 Volume: 107 Dimensions: Width: 15.50cm , Height: 2.80cm , Length: 23.50cm Weight: 1.680kg ISBN: 9780387950006ISBN 10: 0387950001 Pages: 513 Publication Date: 21 January 2000 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Introduction to Lie Groups.- 1.1. Manifolds.- 1.2. Lie Groups.- 1.3. Vector Fields.- 1.4. Lie Algebras.- 1.5. Differential Forms.- Notes.- Exercises.- 2 Symmetry Groups of Differential Equations.- 2.1. Symmetries of Algebraic Equations.- 2.2. Groups and Differential Equations.- 2.3. Prolongation.- 2.4. Calculation of Symmetry Groups.- 2.5. Integration of Ordinary Differential Equations.- 2.6. Nondegeneracy Conditions for Differential Equations.- Notes.- Exercises.- 3 Group-Invariant Solutions.- 3.1. Construction of Group-Invariant Solutions.- 3.2. Examples of Group-Invariant Solutions.- 3.3. Classification of Group-Invariant Solutions.- 3.4. Quotient Manifolds.- 3.5. Group-Invariant Prolongations and Reduction.- Notes.- Exercises.- 4 Symmetry Groups and Conservation Laws.- 4.1. The Calculus of Variations.- 4.2. Variational Symmetries.- 4.3. Conservation Laws.- 4.4. Noether’s Theorem.- Notes.- Exercises.- 5 Generalized Symmetries.- 5.1. Generalized Symmetries of Differential Equations.- 5.2. Récursion Operators, Master Symmetries and Formal Symmetries.- 5.3. Generalized Symmetries and Conservation Laws.- 5.4. The Variational Complex.- Notes.- Exercises.- 6 Finite-Dimensional Hamiltonian Systems.- 6.1. Poisson Brackets.- 6.2. Symplectic Structures and Foliations.- 6.3. Symmetries, First Integrals and Reduction of Order.- Notes.- Exercises.- 7 Hamiltonian Methods for Evolution Equations.- 7.1. Poisson Brackets.- 7.2. Symmetries and Conservation Laws.- 7.3. Bi-Hamiltonian Systems.- Notes.- Exercises.- References.- Symbol Index.- Author Index.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |