Applications of Field-Programmable Gate Arrays in Scientific Research

Author:   Hartmut F.-W. Sadrozinski (University of California, Santa Cruz, USA) ,  Jinyuan Wu (Fermi National Accelerator Laboratory, Batavia, Illinois, USA)
Publisher:   Taylor & Francis Ltd
ISBN:  

9781138112483


Pages:   170
Publication Date:   12 September 2017
Format:   Paperback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $103.00 Quantity:  
Add to Cart

Share |

Applications of Field-Programmable Gate Arrays in Scientific Research


Overview

Focusing on resource awareness in field-programmable gate array (FPGA) design, Applications of Field-Programmable Gate Arrays in Scientific Research covers the principle of FPGAs and their functionality. It explores a host of applications, ranging from small one-chip laboratory systems to large-scale applications in ""big science."" The book first describes various FPGA resources, including logic elements, RAM, multipliers, microprocessors, and content-addressable memory. It then presents principles and methods for controlling resources, such as process sequencing, location constraints, and intellectual property cores. The remainder of the book illustrates examples of applications in high-energy physics, space, and radiobiology. Throughout the text, the authors remind designers to pay attention to resources at the planning, design, and implementation stages of an FPGA application, in order to reduce the use of limited silicon resources and thereby reduce system cost. Supplying practical know-how on an array of FPGA application examples, this book provides an accessible overview of the use of FPGAs in data acquisition, signal processing, and transmission. It shows how FPGAs are employed in laboratory applications and how they are flexible, low-cost alternatives to commercial data acquisition systems. Web Resource A supporting website at http://scipp.ucsc.edu/~hartmut/FPGA offers more details on FPGA programming and usage. The site contains design elements of the case studies from the book, including VHDL code, detailed schematics of selected projects, photographs, and screen shots.

Full Product Details

Author:   Hartmut F.-W. Sadrozinski (University of California, Santa Cruz, USA) ,  Jinyuan Wu (Fermi National Accelerator Laboratory, Batavia, Illinois, USA)
Publisher:   Taylor & Francis Ltd
Imprint:   CRC Press
Weight:   0.320kg
ISBN:  

9781138112483


ISBN 10:   1138112488
Pages:   170
Publication Date:   12 September 2017
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Paperback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Introduction. Understanding FPGA Resources. Several Principles and Methods of Resource Usage Control. Examples of an FPGA in Daily Design Jobs. The ADC + FPGA Structure. Examples of FPGA in Front-End Electronics. Examples of an FPGA in Advanced Trigger Systems. Examples of an FPGA Computation. Radiation Issues. Time-over-Threshold: The Embedded Particle-Tracking Silicon Microscope (EPTSM). Appendix. Index.

Reviews

Author Information

Hartmut F.-W. Sadrozinski is a research physicist and adjunct professor at the University of California, Santa Cruz. A senior fellow of the IEEE, Dr. Sadrozinski has been working on the application of silicon sensors and front-end electronics in elementary particle physics and astrophysics for over 30 years. He is currently involved in the use of silicon sensors to support hadron therapy. He earned his Ph.D. from the Massachusetts Institute of Technology. Jinyuan Wu is an electronics engineer in the Particle Physics Division of Fermi National Accelerator Laboratory. Dr. Wu is a frequent lecturer at international workshops and IEEE conferences. He earned his Ph.D. in experimental high energy physics from Pennsylvania State University.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List