Application of Structural Systems Reliability Theory

Author:   Palle Thoft-Christensen ,  Yoshisada Murotsu
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1986
ISBN:  

9783642827662


Pages:   343
Publication Date:   30 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Application of Structural Systems Reliability Theory


Add your own review!

Overview

During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri­ culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter­ ative calculations to obtain an approximate value of the probability of failure of the struc­ tural members. In these methods the joint probability distribution of relevant variables (re­ sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in­ sufficient data are at hand to make a more advanced estimate of the reliability of a struc­ tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.

Full Product Details

Author:   Palle Thoft-Christensen ,  Yoshisada Murotsu
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1986
Dimensions:   Width: 17.00cm , Height: 1.80cm , Length: 24.40cm
Weight:   0.608kg
ISBN:  

9783642827662


ISBN 10:   3642827667
Pages:   343
Publication Date:   30 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1. Fundamentals of Structural Reliability Theory.- 1.1 Introduction.- 1.2 Modelling of Load and Resistance Variables.- 1.3 The Fundamental Case.- 1.4 Basic Variables and Failure Surfaces.- 1.5 The Hasofer and Lind Reliability Index.- 1.6 Estimate of the Reliability of Single Elements.- 1.7 Non-Normal Basic Variables.- 2. Modelling of Structural Systems.- 2.1 Introduction.- 2.2 Modelling of Structural Elements.- 2.3 Fundamental Systems.- 2.4 Systems Modelling At Level N.- 2.5 Systems Modelling at Mechanism Level.- 2.6 Formal Representation of Systems.- 2.7 Approximations of the Multivariate Normal Distribution Function.- 3. Reliability of Series Systems.- 3.1 Introduction.- 3.2 Probability of Failure of Series Systems.- 3.3 Reliability Bounds for Series Systems.- 3.4 Series Systems with Equally Corelated Elements.- 3.5 Series Systems with Unequally Correlated Elements.- 3.6 The Hohenbichler Approximation.- 4. Reliability of Parallel Systems.- 4.1 Introduction.- 4.2 Probability of Failure of Parallel Systems.- 4.3 Reliability Bounds for Parallel Systems.- 4.4 Equivalent Linear Safety Margins for Parallel Systems.- 4.5 Parallel Systems with Equally Correlated Elements.- 4.6 Parallel Systems with Unequally Correlated Elements.- 5. Automatic Generation of Safety Margins.- 5.1 Introduction.- 5.2 Generation of Safety Margins for Truss Structures.- 5.3 Generation of Safety Margins for Frame Structures Subjected to Single Load Effect.- 5.4 Generation of Safety Margins for Frame Structures Subjected to Combined Load Effects.- 5.5 Generation of Fundamental Mechanisms for Elastoplastic Structures.- 6. Reliability Analysis of Structural Systems by the ?-Unzipping Method.- 6.1 Introduction.- 6.2 Non-Normal Basic Variables.- 6.3 Reliability of Single Elements.- 6.4 Estimate ofSystems Reliability at Level 1.- 6.5 Estimate of Systems Reliability at Level 2.- 6.6 Estimate of Systems Reliability at Level N > 2.- 6.7 Estimate of Systems Reliability at Mechanism Level.- 7. The Branch-and-Bound Method.- 7.1 Introduction.- 7.2 Failure Paths and Failure Modes.- 7.3 The Concept of the Branch-and-Bound Method.- 7.4 Identification of Dominant Failure Paths.- 7.5 Evaluation of the Systems Reliability.- 7.6 Application to Offshore Structures.- 7.7 Further Developments and Numerical Examples.- 8. Optimization of Structural Systems.- 8.1 Introduction.- 8.2 Probability-Based Optimum Design Problem.- 8.3 Various Problems of Probability-Based Optimum Design.- 8.4 Optimum Design Based on Element Reliability.- 8.5 Optimal Design by The ?-Unzipping Method.- Appendix the Standard Normal Distribution Function c.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List