Analytische Stellenalgebren

Author:   O. Riemenschneider ,  Hans Grauert ,  Reinhold Remmert
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Edition:   Softcover reprint of the original 1st ed. 1971
Volume:   176
ISBN:  

9783642650345


Pages:   242
Publication Date:   21 December 2011
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $184.77 Quantity:  
Add to Cart

Share |

Analytische Stellenalgebren


Add your own review!

Overview

Indocti discant, et ament meminisse periti 1. Die Idee der Riemannschen Flache wird in der Funktionentheorie mehrerer komplexer Veranderlichen erst seit Beginn der 50er Jahre konsequent verwendet. Wie in der Funktionentheorie einer Verander- lichen muB man die Gebilde untersuchen, die durch groBtmogliche analytische Fortsetzung von holomorphen Funktionen entstehen. Die gleichen Griinde wie in der klassischen Funktionentheorie machen es notwendig, die Verzweigungspunkte hinzuzunehmen. Das fiihrte jedoch auf begriffiiche Schwierigkeiten, die 1933 H. Behnke und P. Thullen in ihrem Ergebnisbericht sogar veranlaBten, diese Punkte vorerst von der Betrachtung auszuschlieBen. Eine zufriedenstellende Definition des Ver- zweigungsbegriffs wurde erst 1951 von H. Behnke und K. Stein (Math. Ann. 124) gegeben. Die von ihnen eingefiihrten komplex n Riiume um- fassen insbesondere die analytischen Gebilde holomorpher Funktiollen mehrerer Veranderlicher, d. h. die hOherdimensionalen Riemannschen Flachen. Dabei stellte sich heraus, daB diese Riemannschen Gebilde - anders als in der klassischen Funktionentheorie - Punkte ohne lokale Uniformisierende besitzen konnen. Solche Punkte wurden fort an singu- lare Punkte genannt.

Full Product Details

Author:   O. Riemenschneider ,  Hans Grauert ,  Reinhold Remmert
Publisher:   Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Imprint:   Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Edition:   Softcover reprint of the original 1st ed. 1971
Volume:   176
Dimensions:   Width: 15.20cm , Height: 1.40cm , Length: 22.90cm
Weight:   0.379kg
ISBN:  

9783642650345


ISBN 10:   3642650341
Pages:   242
Publication Date:   21 December 2011
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.
Language:   German

Table of Contents

I. Konvergente Potenzreihenalgebren.- § 0. Formale Potenzreihen.- § 1. Analytische k-Banachalgebren.- § 2. Weierstraßsche Formel und Weierstraßscher Vorbereitungssatz für Bt.- § 3. Konvergente Potenzreihen.- § 4. Weierstraßsche Formel und Weierstraßscher Vorbereitungssatz für Kn.- Supplement zu § 4. Der Stickelberger-Siegelsche Beweis des Vorbereitungssatzes.- § 5. Algebraische Struktur des Ringes Kn.- Supplement zu § 5. Noethersche Banachalgebren über ? und ?.- § 6. Die Folgentopologie des Kn.- § 7. Folgentopologien bei lokal-kompaktem Grundkörper.- § 8. Silvatopologie auf Vektorräumen und Algebren.- II. Analytische k-Stellenalgebren.- § 0. Analytische k-Stellenalgebren und analytische Moduln.- § 1. Topologie auf analytischen Stellenalgebren und analytischen Moduln.- § 2. Quasi-endliche und endliche Homomorphismen.- § 3. Einbettungsdimension. Epimorphismen. Umkehrsatz.- § 4. Dimensionstheorie analytischer k-Stellerialgebren. Aktives Lemma.- § 5. Dimension und endliche analytische Homomorphismen.- § 6. Krullsche Dimension. Rein-dimensionale analytische Stellenalgebren.- § 7. Endliche Erweiterungen analytischer Stellenalgebren. Normalisierung.- III. Weiterführende Theorie analytischer k-Stellenalgebren und analytischer Moduln.- § 1. Homologische Codimension (Profondeur).- § 2. Homologische Dimension (Syzygientheorie).- § 3. Invariante analytische k-Unterstellenalgebren.- § 4. Derivations- und Differentialmoduln.- § 5. Analytische Tensorprodukte.- Anhang. Algebraische Hilfsmittel.- § 1. Ringe und Moduln.- 1. Idealpotenzen. Nilpotente Ideale.- 2. Primideale.- 3. Radikale. Reduzierte Ringe. Multiplikative Mengen.- 4. Torsionsmoduln. Quotientenmoduln.- 5. Rang und Corang.- 6. Noethersche Moduln.- 8. Zerlegungssatz von Lasker-Noether.-§ 2. Endliche Moduln über noetherschen Stellenringen.- 2. Lemma von Nakayama.- 3. Krullscher Durchschnittsatz.- 4. Corang.- 5. Jacobirang.- 6. Einbettungsdimension.- 7. Freie Moduln.- § 3. Normale noethersche Integritätsringe.- 1. Ganze Elemente. Dedekindsches Lemma.- 2. Ganzer Abschluß. Normalisierung.- 3. Charakterisierung ganz-abgeschlossener Ringe.- 4. Hauptidealsatz.- 5. Minimale Primideale.- 6. Teilbarkeitstheorie.- § 4. Reduzierte und noethersche Ringe.- 1. Direkte Summen von Ringen.- 2. Epimorphiesatz.- 3. Reduzierte noethersche Ringe.- 4. Charakterisierung von Torsionsmoduln.- Literatur.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List