|
![]() |
|||
|
||||
OverviewThis book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap. Full Product DetailsAuthor: Joseph W. JeromePublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1996 Dimensions: Width: 15.50cm , Height: 1.00cm , Length: 23.50cm Weight: 0.295kg ISBN: 9783642799891ISBN 10: 3642799892 Pages: 167 Publication Date: 08 December 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of Contents1. Introduction.- 1.1 Modeling.- 1.2 Computational Foundations.- 1.3 Mathematical Theory.- 1.4 Summary.- I. Modeling of Semiconductor Devices.- 2. Development of Drift-Diffusion Models.- 3. Moment Models: Microscopic to Macroscopic.- II. Computational Foundations.- 4. A Family of Solution Fixed Point Maps: Partial Decoupling.- 5. Nonlinear Convergence Theory for Finite Elements.- III. Mathematical Theory.- 6. Numerical Fixed Point Approximation in Banach Space.- 7. Construction of the Discrete Approximation Sequence.- References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |