|
![]() |
|||
|
||||
OverviewBereits in 6. Auflage präsentiert das erfolgreiche Lehrbuch den Kanon der Analysis einer Veränderlichen. Durch die zahlreichen Beispiele und und Übungsaufgaben mit Lösungen eignet es sich bestens als Begleit-Literatur zu einer Vorlesung, zum Selbststudium und zur Prüfungsvorbereitung. Die vielen historischen Anmerkungen und eingestreuten Perlen der klassischen Analysis geben diesem Lehrbuch seinen besonderen Reiz. Full Product DetailsAuthor: Konrad Königsberger , Konrad Kc6nigsberger , Konrad Knigsberger , Konrad KonigsbergerPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 6. Aufl. 2004 Dimensions: Width: 15.50cm , Height: 2.20cm , Length: 23.50cm Weight: 1.320kg ISBN: 9783540403715ISBN 10: 354040371 Pages: 414 Publication Date: 04 September 2003 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of print, replaced by POD ![]() We will order this item for you from a manufatured on demand supplier. Language: German Table of Contents1 Naturliche Zahlen und vollstandige Induktion.- 1.1 Vollstandige Induktion.- 1.2 Fakultat und Binomialkoeffizienten.- 1.3 Aufgaben.- 2 Reelle Zahlen.- 2.1 Die Koerperstruktur von ?.- 2.2 Die Anordnung von ?.- 2.3 Die Vollstandigkeit von ?.- 2.4 ? ist nicht abzahlbar.- 2.5 Aufgaben.- 3 Komplexe Zahlen.- 3.1 Der Koerper der komplexen Zahlen.- 3.2 Die komplexe Zahlenebene.- 3.3 Algebraische Gleichungen in ?.- 3.4 Die Unmoeglichkeit einer Anordnung von ?.- 3.5 Aufgaben.- 4 Funktionen.- 4.1 Grundbegriffe.- 4.2 Polynome.- 4.3 Rationale Funktionen.- 4.4 Aufgaben.- 5 Folgen.- 5.1 Konvergenz von Flogen.- 5.2 Rechenregeln.- 5.3 Monotone Folgen.- 5.4 Eine Rekursionsfolge zur Berechnung von Quadratwurzeln.- 5.5 Der Satz von Bolzano-Weierstrass.- 5.6 Das Konvergenzkriterium von Bolzano-Cauchy. Nochmals die Vollstandigkeit von ?.- 5.7 Uneigentliche Konvergenz.- 5.8 Aufgaben.- 6 Reihen.- 6.1 Konvergenz von Reihen.- 6.2 Konvergenzkriterien.- 6.3 Summierbare Familien.- 6.4 Potenzreihen.- 6.5 Aufgaben.- 7 Stetige Funktionen. Grenzwerte.- 7.1 Stetigkeit.- 7.2 Rechnen mit stetigen Funktionen.- 7.3 Erzeugung stetiger Funktionen durch normal konvergente Reihen.- 7.4 Stetige reelle Funktionen auf Intervallen. Der Zwischenwertsatz.- 7.5 Stetige Funktionen auf kompakten Mengen. Der Satz vom Maximum und Minimum.- 7.6 Anwendung: Beweis des Fundamentalsatzes der Algebra.- 7.7 Stetige Fortsetzung. Grenzwerte von Funktionen.- 7.8 Einseitige Grenzwerte. Uneigentliche Grenzwerte.- 7.9 Aufgaben.- 8 Die Exponentialfunktionund die trigonometrischen Funktionen.- 8.1 Definition der Exponentialfunktion.- 8.2 Die Exponentialfunktion fur reelle Argumente.- 8.3 Der naturliche Logarithmus.- 8.4 Exponentialfunktionen zu allgemeinen Basen. Allgemeine Potenzen.- 8.5 Binomialreihen und Logarithmusreihe.- 8.6 Definition der trigonometrischen Funktionen.- 8.7 Nullstellen und Periodizitat.- 8.8 Die Arcus-Funktionen.- 8.9 Polarkoordinaten komplexer Zahlen.- 8.10 Geometrie der Exponentialabbildung. Hauptzweig des komplexen Logarithmus und des Arcustangens.- 8.11 Die Zahl ?.- 8.12 Die hyperbolischen Funktionen.- 8.13 Aufgaben.- 9 Differentialrechnung.- 9.1 Die Ableitung einer Funktion.- 9.2 Ableitungsregeln.- 9.3 Mittelwertsatz und Schrankensatz.- 9.4 Beispiele und Anwendungen.- 9.5 Reihen differenzierbarer Funktionen.- 9.6 Ableitungen hoeherer Ordnung.- 9.7 Konvexitat.- 9.8 Konvexe Funktionen und Ungleichungen.- 9.9 Fast uberall differenzierbare Funktionen. Verallgemeinerter Schrankensatz.- 9.10 Der Begriff der Stammfunktion.- 9.11 Eine auf ganz ? stetige, nirgends differenzierbare Funktion.- 9.12 Aufgaben.- 10 Lineare Differentialgleichungen.- 10.1 Eindeutigkeitssatz und Dimensionsabschatzung.- 10.2 Ein Fundamentalsystem fur die homogene Gleichung.- 10.3 Partikulare Loesungen bei speziellen Inhomogenitaten.- 10.4 Anwendung auf Schwingungsprobleme.- 10.5 Partikulare Loesungen bei allgemeinen Inhomogenitaten.- 10.6 Erweiterung des Loesungsbegriffes.- 10.7 Aufgaben.- 11 Integralrechnung.- 11.1 Treppenfunktionen und ihre Integration.- 11.2 Regelfunktionen.- 11.3 Integration der Regelfunktionen uber kompakte Intervalle.- 11.4 Der Hauptsatz der Differential- und Integralrechnung. Stammfunktionen zu Regelfunktionen.- 11.5 Erste Anwendungen.- 11.6 Integration elementarer Funktionen.- 11.7 Integration normal konvergenter Reihen.- 11.8 Riemannsche Summen.- 11.9 Integration uber nicht kompakte Intervalle.- 11.10 Die Eulersche Summationsformel.- 11.11 Aufgaben.- 12 Geometrie differenzierbarer Kurven.- 12.1 Parametrisierte Kurven. Grundbegriffe.- 12.2 Die Bogenlange.- 12.3 Parameterwechsel.- 12.4 Krummung ebener Kurven.- 12.5 Die Sektorflache ebener Kurven.- 12.6 Kurven in Polarkoordinaten.- 12.7 Liftung und Windungzahlen.- 12.8 Noch ein Beweis des Fundamentalsatzes der Algebra.- 12.9 Geometrie der Planetenbewegung Die drei Keplerschen Gesetze.- 12.10 Aufgaben.- 13 Elementar integrierbare Differentialgleichungen.- 13.1 Wachstumsmodelle. Lineare und Bernoullische Gleichungen.- 13.2 Differentialgleichungen mit getrennten Veranderlichen.- 13.3 Nicht-lineare Schwingungen. Die Differentialgleichung % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaGafmiEaGNbamaacqGH9aqpcqWGMbGzcqGGOaakcqWG % 4baEcqGGPaqkaaa!41D4! $$ \ddot x = f(x) $$.- 13.4 Aufgaben.- 14 Lokale Approximation von Funktionen. Taylorpolynome und Taylorreihen.- 14.1 Approximation durch Taylorpolynome.- 14.2 Taylorreihen. Rechnen mit Potenzreihen.- 14.3 Bernoulli-Zahlen und Cotangensreihe. Bernoulli-Polynome.- 14.4 Das Newton-Verfahren.- 14.5 Aufgaben.- 15 Globale Approximation von Funktionen. Gleichmassige Konvergenz.- 15.1 Gleichmassige Konvergenz.- 15.2 Vertauschungssatze.- 15.3 Kriterien fur gelichmassige Konvergenz.- 15.4 Anwendung: dei Eulerschen Formeln fur ?(2n).- 15.5 Approximation durch Faltung mit Dirac-Folgen.- 15.6 Lokal gleichmassige Konvergenz. Der UEberdeckungssatz von Heine-Borel.- 15.7 Der Approximationssatz von Stone.- 15.8 Aufgaben.- 16 Approximation periodischer Funktionen. Fourierreihen.- 16.1 Der Approximationssatz von Fejer.- 16.2 Definition der Fourierreihen. Erste Beispiele und Anwendungen.- 16.3 Punktweise Konvergenz nach Dirichlet.- 16.4 Ein Beispiel von Fejer.- 16.5 Die Besselsche Approximation periodischer Funktionen.- 16.6 Fourierreihen stuckweise stetig differenzierbarer Funktionen.- 16.7 Konvergenz im quadratischen Mittel. Die Parsevalsche Gleichung.- 16.8 Anwendung: das isoperimetrische Problem.- 16.9 Warmeleitung in einem Ring. Die Thetafunktion.- 16.10 Die Poissonsche Summenformel.- 16.11 Aufgaben.- 17 Die Gammafunktion.- 17.1 Die Gammafunktion nach Gauss.- 17.2 Der Eindeutigkeitssatz der Gammafunktion von Bohr und Mollerup. Die Eulersche Integraldarstellung.- 17.3 Die Stirlingsche Formel.- 17.4 Aufgaben.- Biographische Notiz zu Ewer.- Loesungen zu den Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |