An Introduction to the Mathematical Theory of Inverse Problems

Author:   Andreas Kirsch
Publisher:   Springer-Verlag New York Inc.
Edition:   Second Edition 2011
Volume:   120
ISBN:  

9781461428510


Pages:   310
Publication Date:   19 April 2013
Replaced By:   9783030633424
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $171.57 Quantity:  
Add to Cart

Share |

An Introduction to the Mathematical Theory of Inverse Problems


Overview

This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces  the reader to the inverse problem of electrical impedance tomography.

Full Product Details

Author:   Andreas Kirsch
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Second Edition 2011
Volume:   120
Dimensions:   Width: 15.50cm , Height: 1.70cm , Length: 23.50cm
Weight:   0.498kg
ISBN:  

9781461428510


ISBN 10:   1461428513
Pages:   310
Publication Date:   19 April 2013
Audience:   Professional and scholarly ,  Professional & Vocational
Replaced By:   9783030633424
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.
Language:   English

Table of Contents

Reviews

From the reviews of the second edition: Andreas Kirsch successfully wrote this book not only for mathematics students but also physics and engineering students. ... I think that this book would work very nicely as a university textbook. ... All sections of the books seemed sprinkled with the latest results, showing that there is a surprising amount of current research activity in this area. I recommend this book to anyone interested in inverse problems, and book's index makes it a valuable reference volume for your book shelf. (Collin Carbno, The Mathematical Association of America, January, 2012)


From the reviews of the second edition: Andreas Kirsch successfully wrote this book not only for mathematics students but also physics and engineering students. ... I think that this book would work very nicely as a university textbook. ... All sections of the books seemed sprinkled with the latest results, showing that there is a surprising amount of current research activity in this area. I recommend this book to anyone interested in inverse problems, and book's index makes it a valuable reference volume for your book shelf. (Collin Carbno, The Mathematical Association of America, January, 2012)


Author Information

Andreas Kirsch is a Professor in the Department of Mathematics at Karlsruhe Institute of Technology.

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List