|
![]() |
|||
|
||||
OverviewThe topic of lattice quantum spin systems (or 'spin systems' for short) is a f- cinating branch of theoretical physics and one of great pedigree, although many importantquestionsstillremaintobeanswered. The'spins'areatomic-sizedm- netsthatarelocalisedtopointsonalatticeandtheyinteractviathelawsofquantum mechanics. Thisintrinsicquantummechanicalnatureandthelarge(usuallyeff- tivelyin nite)numberofspinsleadstostrikingresultswhichcanbequitedifferent fromclassicalresultsandareoftenunexpectedandindeedcounter-intuitive. Spinsystemsconstitutethebasicmodelsofquantummagneticinsulatorsandso arerelevanttoawholehostofmagneticmaterials. Furthermore,theyareimportant asprototypicalmodelsofquantumsystemsbecausetheyareconceptuallysimple and yet stilldemonstrate surprisingly rich physics. Low dimensional systems, in 2Dandespecially1D,havebeenparticularlyfruitfulbecausetheirsimplicityhas enabledexactsolutionstobefoundwhichstillcontainmanyhighlynon-trivialf- tures. Spinsystemsoftendemonstratephasetransitionsandsowecanusethemto studytheinterplayofthermalandquantum uctuationsindrivingsuchtransitions. Ofcoursetherearemanycasesinwhichwecan ndnoexactsolutionandinthese casestheycanbeusedasatestinggroundforapproximatemethodsofmodern-day quantummechanics. Thesequantumsystemsthusprovideagreatvarietyofint- estinganddif cultchallengestothemathematicianorphysicalscientist. Thisbookwaspromptedbyaseriesoftalksgivenbyoneoftheauthors(JBP)at asummerschoolinJyvaskyla,Finland. Thesetalksprovidedadetailedviewofhow onegoesaboutsolvingthebasicproblemsinvolvedintreatingandunderstanding spinssystemsatzerotemperature. Itwasthislevelofdetail,missingfromothertexts inthearea,thatpromptedtheotherauthor(DJJF)tosuggestthattheselecturesbe broughttogetherwithsupplementarymaterialinordertoprovideadetailedguide whichmightbeofuse,perhapstoagraduatestudentstartingworkinthisarea. Thebookisorganisedintochaptersthatdeal rstlywiththenatureofquantum mechanicalspinsandtheirinteractions. Thefollowingchaptersthengiveadetailed guidetothesolutionoftheHeisenbergandXYmodelsatzerotemperatureusing theBetheAnsatzandtheJordan-Wignertransformation,respectively. Approximate methodsarethenconsideredfromChap. 7onwards,dealingwithspin-wavet- oryandnumericalmethods(suchasexactdiagonalisationsandMonteCarlo). The coupledclustermethod(CCM),apowerfultechniquethathasonlyrecentlybeen vii viii Preface appliedtospinsystemsisdescribedinsomedetail. The nalchapterdescribesother work,someofitveryrecent,toshowsomeofthedirectionsinwhichstudyofthese systemshasdeveloped. Theaimofthetextistoprovideastraightforwardandpracticalaccountofall of the steps involved in applying many of the methods used for spins systems, especiallywherethisrelatestoexactsolutionsforin nitenumbersofspinsatzero temperature. Inthisway,wehopetoprovidethereaderwithinsightintothesubtle natureofquantumspinproblems. Manchester,UK JohnB. Parkinson January2010 DamianJ. J. Farnell Contents 1 Introduction ...1 References...5 2 Spin Models...7 2. 1 SpinAngularMomentum...7 2. 2 CoupledSpins...10 1 2. 3 TwoInteractingSpin- 'areatomic-sizedm- netsthatarelocalisedtopointsonalatticeandtheyinteractviathelawsofquantum mechanics. Thisintrinsicquantummechanicalnatureandthelarge(usuallyeff- tivelyin nite)numberofspinsleadstostrikingresultswhichcanbequitedifferent fromclassicalresultsandareoftenunexpectedandindeedcounter-intuitive. Spinsystemsconstitutethebasicmodelsofquantummagneticinsulatorsandso arerelevanttoawholehostofmagneticmaterials. Furthermore,theyareimportant asprototypicalmodelsofquantumsystemsbecausetheyareconceptuallysimple and yet stilldemonstrate surprisingly rich physics. Low dimensional systems, in 2Dandespecially1D,havebeenparticularlyfruitfulbecausetheirsimplicityhas enabledexactsolutionstobefoundwhichstillcontainmanyhighlynon-trivialf- tures. Spinsystemsoftendemonstratephasetransitionsandsowecanusethemto studytheinterplayofthermalandquantum uctuationsindrivingsuchtransitions. Ofcoursetherearemanycasesinwhichwecan ndnoexactsolutionandinthese casestheycanbeusedasatestinggroundforapproximatemethodsofmodern-day quantummechanics. Thesequantumsystemsthusprovideagreatvarietyofint- estinganddif cultchallengestothemathematicianorphysicalscientist. Thisbookwaspromptedbyaseriesoftalksgivenbyoneoftheauthors(JBP)at asummerschoolinJyvaskyla,Finland. Thesetalksprovidedadetailedviewofhow onegoesaboutsolvingthebasicproblemsinvolvedintreatingandunderstanding spinssystemsatzerotemperature. Itwasthislevelofdetail,missingfromothertexts inthearea,thatpromptedtheotherauthor(DJJF)tosuggestthattheselecturesbe broughttogetherwithsupplementarymaterialinordertoprovideadetailedguide whichmightbeofuse,perhapstoagraduatestudentstartingworkinthisarea. Thebookisorganisedintochaptersthatdeal rstlywiththenatureofquantum mechanicalspinsandtheirinteractions. Thefollowingchaptersthengiveadetailed guidetothesolutionoftheHeisenbergandXYmodelsatzerotemperatureusing theBetheAnsatzandtheJordan-Wignertransformation,respectively. Approximate methodsarethenconsideredfromChap. 7onwards,dealingwithspin-wavet- oryandnumericalmethods(suchasexactdiagonalisationsandMonteCarlo). The coupledclustermethod(CCM),apowerfultechniquethathasonlyrecentlybeen vii viii Preface appliedtospinsystemsisdescribedinsomedetail. The nalchapterdescribesother work,someofitveryrecent,toshowsomeofthedirectionsinwhichstudyofthese systemshasdeveloped. Theaimofthetextistoprovideastraightforwardandpracticalaccountofall of the steps involved in applying many of the methods used for spins systems, especiallywherethisrelatestoexactsolutionsforin nitenumbersofspinsatzero temperature. Inthisway,wehopetoprovidethereaderwithinsightintothesubtle natureofquantumspinproblems. Manchester,UK JohnB. Parkinson January2010 DamianJ. J. Farnell Contents 1 Introduction ...1 References...5 2 Spin Models...7 2. 1 SpinAngularMomentum...7 2. 2 CoupledSpins...10 1 2. 3 TwoInteractingSpin- 's...11 2 2. 4 CommutatorsandQuantumNumbers...14 2. 5 PhysicalPicture...16 2. 6 In niteArraysofSpins...16 1 2. 7 1DHeisenbergChainwith S = andNearest-Neighbour 2 Interaction...18 References...19 1 3 Quantum Treatment of the Spin- Chain...21 2 3. 1 GeneralRemarks...21 3. 2 AlignedState...22 3. 3 SingleDeviationStates...23 3. 4 TwoDeviationStates...27 3. 4. 1 FormoftheStates ...33 3. 5 ThreeDeviationStates...36 Z N 3. 5. 1 BetheAnsatzforS = ?3...36 T 2 3. 6 StateswithanArbitraryNumberofDeviations...37 Reference...38 4 The Antiferromagnetic Ground State ...39 4. 1 TheFundamentalIntegralEquation...39 4. 2 SolutionoftheFundamentalIntegralEquation...43 4. 3 TheGroundStateEnergy...45 References...47 ix x Contents 5 Antiferromagnetic Spin Waves ...49 5. 1 TheBasicFormalism ...49 5. 2 MagneticFieldBehaviour ... Full Product DetailsAuthor: John B. Parkinson , Damian J. J. FarnellPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Volume: 816 Dimensions: Width: 15.50cm , Height: 0.90cm , Length: 23.50cm Weight: 0.540kg ISBN: 9783642132896ISBN 10: 3642132898 Pages: 154 Publication Date: 20 September 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsSpin Models.- Quantum Treatment of the Spin-1/2 Chain.- The Antiferromagnetic Ground State.- Antiferromagnetic Spin Waves.- The XY Model.- Spin-Wave Theory.- Numerical Finite-Size Calculations.- Other Approximate Methods.- The Coupled Cluster Method.- Quantum Magnetism.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |