|
![]() |
|||
|
||||
OverviewManifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'. Full Product DetailsAuthor: Loring W. TuPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 2nd ed. 2011 Dimensions: Width: 15.50cm , Height: 2.30cm , Length: 23.50cm Weight: 0.658kg ISBN: 9781441973993ISBN 10: 1441973990 Pages: 410 Publication Date: 06 October 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: English Table of ContentsPreface to the Second Edition.- Preface to the First Edition.- Chapter 1. Euclidean Spaces.- Chapter 2. Manifolds.- Chapter 3. The Tangent Space.- Chapter 4. Lie Groups and Lie Algebras.-Chapter 5. Differential Forms.- Chapter 6. Integration.-Chapter 7. De Rham Theory.- Appendices.- A. Point-Set Topology.- B. The Inverse Function Theorem on R(N) and Related Results.- C. Existence of a Partition of Unity in General.- D. Linear Algebra.- E. Quaternions and the Symplectic Group.- Solutions to Selected Exercises.- Hints and Solutions to Selected End-of-Section Problems.- List of Symbols.- References.- Index.ReviewsFrom the reviews of the second edition: This book could be called a prequel to the book 'Differential forms in algebraic topology' by R. Bott and the author. Assuming only basic background in analysis and algebra, the book offers a rather gentle introduction to smooth manifolds and differential forms offering the necessary background to understand and compute deRham cohomology. ... The text also contains many exercises ... for the ambitious reader. (A. Cap, Monatshefte fur Mathematik, Vol. 161 (3), October, 2010) "From the reviews of the second edition: ""This book could be called a prequel to the book 'Differential forms in algebraic topology, by R. Bott and the author. Assuming only basic background in analysis and algebra, the book offers a rather gentle introduction to smooth manifolds and differential forms offering the necessary background to understand and compute deRham cohomology. ... The text also contains many exercises ... for the ambitious reader."" (A. Cap, Monatshefte fur Mathematik, Vol. 161 (3), October, 2010)" From the reviews of the second edition: This book could be called a prequel to the book 'Differential forms in algebraic topology, by R. Bott and the author. Assuming only basic background in analysis and algebra, the book offers a rather gentle introduction to smooth manifolds and differential forms offering the necessary background to understand and compute deRham cohomology. ... The text also contains many exercises ... for the ambitious reader. (A. Cap, Monatshefte fur Mathematik, Vol. 161 (3), October, 2010) Author InformationLoring W. Tu was born in Taipei, Taiwan, and grew up in Taiwan,Canada, and the United States. He attended McGill University and Princeton University as an undergraduate, and obtained his Ph.D. from Harvard University under the supervision of Phillip A. Griffiths. He has taught at the University of Michigan, Ann Arbor, and at Johns Hopkins University, and is currently Professor of Mathematics at Tufts University in Massachusetts. An algebraic geometer by training, he has done research at the interface of algebraic geometry,topology, and differential geometry, including Hodge theory, degeneracy loci, moduli spaces of vector bundles, and equivariant cohomology. He is the coauthor with Raoul Bott of ""Differential Forms in Algebraic Topology."" Tab Content 6Author Website:Countries AvailableAll regions |