An Introduction to Cryptology

Author:   Henk C.A. van Tilborg
Publisher:   Kluwer Academic Publishers
Edition:   1988 ed.
Volume:   52
ISBN:  

9780898382716


Pages:   170
Publication Date:   30 April 1988
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $382.80 Quantity:  
Add to Cart

Share |

An Introduction to Cryptology


Add your own review!

Overview

TO CRYPTOLOGY by Henk C. A. van Tilborg Eindhoven University of Technology THE NETHERLANDS l1li...KLUWER ACADEMIC PUBLISHERS Boston / Dordrecht "" / Lancaster Dlstrlbuton for North America Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Dlstrlbuton for the VK and lreland Kluwer Academic Publishers Falcon House, Queen Square Lancaster LAI IRN, UNITED KINGDOM Dlstrlbuton for aII other countrles Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Library of Congress Cataloglng-in-Publication Data Tilborg, Henk C. A. van, 1947- An introduction to cryptology. (The Kluwer international series in engineering and computer science) Bibliography: p. Includes index. 1. Cryptology. 2. Cyrptography-Data processing. 1. Title. II. Series. Z103. T54 1987 652'. 8 88-616 ISBN-I3: 978-1-4612-8955-5 e-ISBN-I3: 978-1-4613-1693-0 DOI: 10. 1007/978-1-4613-1693-0 Copyright (c) 1988 by Kluwer Academic Publishers Softcover reprint ofthe hardcover lst edition 1988 AlI rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061. 10 Marijke, who afler so many years stiU is an enigma 10 me CONTENTS page vii Contents ix Preface 1. INTRODUCfION 2. CLASSICAL SYSTEMS 7 2. 1. Caesar, simple substitutions, Vigenere 7 2. 2. The incidence of coincidences 11 2. 3. Vemam, Playfair, Transpositions, Hagelin, Enigma 14 19 3. SHIFf REGISTER SEQUENCES 3. 1.

Full Product Details

Author:   Henk C.A. van Tilborg
Publisher:   Kluwer Academic Publishers
Imprint:   Kluwer Academic Publishers
Edition:   1988 ed.
Volume:   52
Dimensions:   Width: 17.80cm , Height: 1.20cm , Length: 25.40cm
Weight:   1.210kg
ISBN:  

9780898382716


ISBN 10:   0898382718
Pages:   170
Publication Date:   30 April 1988
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

2. Classical Systems.- 2.1. Caesar, simple substitutions, Vigenère.- 2.2. The incidence of coincidences.- 2.3. Vernam, Playfair, Transpositions, Hagelin, Enigma.- 3. Shift Register Sequences.- 3.1. Introduction.- 3.2. Linear feedback shift registers.- 3.3. Non-linear algorithms.- 4. Shannon Theory.- 5. Huffman Codes.- 6. Des.- 7. Public Key Cryptography.- 8. The Discrete Logarithm Problem.- 8.1. The discrete logarithm system.- 8.2. How to take discrete logarithms.- 9. RSA.- 9.1. The RSA system.- 9.2. The Solovay and Strassen primality test.- 9.3. The Cohen and Lenstra primality test.- 9.4. The Rabin variant.- 10. The Mceliece System.- 11. The Knapsack Problem.- 11.1. The knapsack system.- 11.2. The Shamir attack.- 11.3. The Lagarias and Odlyzko attack.- 12. Threshold Schemes.- 13. Other Directions.- Appendix A. Elementary Number Theory.- A.1. Introduction.- A.2. Euclid’s Algorithm.- A.3. Congruences, Fermat, Euler, Chinese Remainder Theorem.- A.4. Quadratic residues.- A.5. Möbius inversion formula, the principle of inclusion and exclusion.- Appendix B. The Theory of Finite Fields.- B.1. Groups, rings, ideals and fields.- B.2. Constructions.- B.3. The number of irreducible polynomials over IFq.- B.4. The structure of finite fields.- References.- Notations.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List