An Introduction to Convex Polytopes

Author:   Arne Brondsted
Publisher:   Springer-Verlag New York Inc.
Edition:   1983 ed.
Volume:   90
ISBN:  

9780387907222


Pages:   162
Publication Date:   21 December 1982
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $261.36 Quantity:  
Add to Cart

Share |

An Introduction to Convex Polytopes


Overview

The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under­ stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac­ terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Full Product Details

Author:   Arne Brondsted
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   1983 ed.
Volume:   90
Dimensions:   Width: 15.50cm , Height: 1.10cm , Length: 23.50cm
Weight:   0.940kg
ISBN:  

9780387907222


ISBN 10:   038790722
Pages:   162
Publication Date:   21 December 1982
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

1 Convex Sets.- �A7;1. The Affine Structure of ?d.- �A7;2. Convex Sets.- �A7;3. The Relative Interior of a Convex Set.- �A7;4. Supporting Hyperplanes and Halfspaces.- �A7;5. The Facial Structure of a Closed Convex Set.- �A7;6. Polarity.- 2 Convex Polytopes.- �A7;7. Polytopes.- �A7;8. Polyhedral Sets.- �A7;9. Polarity of Polytopes and Polyhedral Sets.- �A7;10. Equivalence and Duality of Polytopes.- �A7;11. Vertex-Figures.- �A7;12. Simple and Simplicial Polytopes.- �A7;13. Cyclic Polytopes.- �A7;14. Neighbourly Polytopes.- �A7;15. The Graph of a Polytope.- 3 Combinatorial Theory of Convex Polytopes.- �A7;16. Eulerߣs Relation.- �A7;17. The Dehn-Sommerville Relations.- �A7;18. The Upper Bound Theorem.- �A7;19. The Lower Bound Theorem.- �A7;20. McMullenߣs Conditions.- Appendix 1 Lattices.- Appendix 2 Graphs.- Appendix 3 Combinatorial Identities.- Bibliographical Comments.- List of Symbols.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List