|
![]() |
|||
|
||||
OverviewThe last decade has seen a huge and growing interest in processing large data sets on large distributed clusters. This trend began with the MapReduce framework, and has been widely adopted by several other systems, including PigLatin, Hive, Scope, Dremmel, Spark and Myria to name a few. While the applications of such systems are diverse (for example, machine learning, data analytics), most involve relatively standard data processing tasks like identifying relevant data, cleaning, filtering, joining, grouping, transforming, extracting features, and evaluating results. This has generated great interest in the study of algorithms for data processing on large distributed clusters. Algorithmic Aspects of Parallel Data Processing discusses recent algorithmic developments for distributed data processing. It uses a theoretical model of parallel processing called the Massively Parallel Computation (MPC) model, which is a simplification of the BSP model where the only cost is given by the amount of communication and the number of communication rounds. The survey studies several algorithms for multi-join queries, sorting, and matrix multiplication. It discusses their relationships and common techniques applied across the different data processing tasks. Full Product DetailsAuthor: Paraschos Koutris , Semih Salihoglu , Dan SuciuPublisher: now publishers Inc Imprint: now publishers Inc Dimensions: Width: 15.60cm , Height: 0.80cm , Length: 23.40cm Weight: 0.213kg ISBN: 9781680834062ISBN 10: 1680834061 Pages: 144 Publication Date: 22 February 2018 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |