|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Allan J Silberger , C.R.F. MaunderPublisher: Dover Publications Inc. Imprint: Dover Publications Inc. Edition: New edition Dimensions: Width: 13.60cm , Height: 2.00cm , Length: 21.40cm Weight: 0.410kg ISBN: 9780486691312ISBN 10: 0486691314 Pages: 400 Publication Date: 01 February 2000 Audience: General/trade , General Format: Paperback Publisher's Status: No Longer Our Product Availability: Awaiting stock ![]() The supplier is currently out of stock of this item. It will be ordered for you and placed on backorder. Once it does come back in stock, we will ship it out for you. Table of ContentsCHAPTER 1 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES 1.1 Introduction 1.2 Set theory 1.3 Algebra 1.4 Analytic Topology CHAPTER 2 HOMOTOPY AND SIMPLICIAL COMPLEXES 2.1 Introduction 2.2 The classification problem; homotopy 2.3 Simplicial complexes 2.4 Homotopy and homeomorphism of polyhedra 2.5 Subdivision and the Simplicial Approximation Theorem Exercises Notes on Chapter 2 CHAPTER 3 THE FUNDAMENTAL GROUP 3.1 Introduction 3.2 Definition and elementary properties of the fundamental group 3.3 Methods of calculation 3.4 Classification of triangulable 2-manifolds Exercises Notes on Chapter 3 CHAPTER 4 HOMOLOGY THEORY 4.1 Introduction 4.2 Homology groups 4.3 Methods of calculation: simplicial homology 4.4 Methods of calculation: exact sequences 4.5 ""Homology groups with arbitrary coefficients, and the Lefschetz Fixed-Point Theorem"" Exercises Notes on Chapter 4 CHAPTER 5 COHOMOLOGY AND DUALITY THEOREMS 5.1 Introduction 5.2 Definitions and calculation theorems 5.3 The Alexander-Poincare Duality Theorem 5.4 Manifolds with boundary and the Lefschetz Duality Theorem Exercises Notes on Chapter 5 CHAPTER 6 GENERAL HOMOTOPY THEORY 6.1 Introduction 6.2 Some geometric constructions 6.3 Homotopy classes of maps 6.4 Exact sequences 6.5 Fibre and cofibre maps Exercises Notes on Chapter 6 CHAPTER 7 HOMOTOPY GROUPS AND CW-COMPLEXES 7.1 Introduction 7.2 Homotopy groups 7.3 CW-complexes 7.4 Homotopy groups of CW-complexes 7.5 The theorem of J. H. C. Whitehead and the Cellular Approximation Theorem Exercises Notes on Chapter 7 CHAPTER 8 HOMOLOGY AND COHOMOLOGY OF CW-COMPLEXES 8.1 Introduction 8.2 The Excision Theorem and cellular homology 8.3 The Hurewicz theorem 8.4 Cohomology and Eilenberg-MacLane spaces 8.5 Products Exercises Notes on Chapter 8 References IndexReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |