|
![]() |
|||
|
||||
OverviewThis book contains the proceedings of a conference entitled 'Algebraic K-Theory and Algebraic Topology', held at Chateau Lake Louise, Alberta, Canada, December 12--16, 1991. The papers published here represent the latest research in algebraic K-theory and related developments in other fields. This book is intended for and will be of interest to researchers in K-theory, topology, geometry and number theory. Full Product DetailsAuthor: P.G. Goerss , John F. JardinePublisher: Springer Imprint: Springer Edition: Softcover reprint of hardcover 1st ed. 1993 Volume: 407 Dimensions: Width: 15.50cm , Height: 1.80cm , Length: 23.50cm Weight: 0.528kg ISBN: 9789048143023ISBN 10: 9048143020 Pages: 328 Publication Date: 08 December 2010 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsPreface. Conductors in the Non-separable Residue Field Case; R. Boltje, G.-M. Cram, V.P. Snaith. On the Reciprocity Sequence in the Higher Class Field Theory of Function Fields; J.-L. Colliot-Thélène. Résultats de `pureté' pour les variétés lisses sur un corps fini: Appendice à l'article de J.-L. Colliot-Thélène; B. Kahn. Module Structures on the Hochschild and Cyclic Homology of Graded Rings; B.H. Dayton, C.A. Weibel. The Intersection Homology and Derived Category of Algebraic Stacks; R. Joshua. On the Lichtenbaum--Quillen Conjecture; B. Kahn. Tate Motives and the Vanishing Conjectures for Algebraic K-Theory; M. Levine. Suslin Homology and Deligne 1-Motives; S. Lichtenbaum. On p-adic Topological K-Theory; S.A. Mitchell. Life after the Telescope Conjecture; D.C. Ravenel. Finiteness of Subintegrality; L. Reid, L.G. Roberts, B. Singh. Cohomological Hasse Principle for a Threefold over a Finite Field; S. Saito. Les K-groupes d'un fibré projectif; R.W. Thomason. Étale Chern Classes at the Prime 2; C. Weibel. Cosimplicial Objects in Algebraic Geometry; Z. Wojtkowiak.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |