Algebraic Geometry and Singularities: 3rd International Conference on Algebraic Geometry : Revised Papers

Author:   Antonio Campillo Lopez ,  Luis Narvaez Macarro
Publisher:   Birkhauser Verlag AG
Edition:   1996 ed.
Volume:   v. 134
ISBN:  

9783764353346


Pages:   407
Publication Date:   26 January 1995
Format:   Hardback
Availability:   Out of stock   Availability explained


Our Price $261.36 Quantity:  
Add to Cart

Share |

Algebraic Geometry and Singularities: 3rd International Conference on Algebraic Geometry : Revised Papers


Add your own review!

Overview

Full Product Details

Author:   Antonio Campillo Lopez ,  Luis Narvaez Macarro
Publisher:   Birkhauser Verlag AG
Imprint:   Birkhauser Verlag AG
Edition:   1996 ed.
Volume:   v. 134
Weight:   0.835kg
ISBN:  

9783764353346


ISBN 10:   3764353341
Pages:   407
Publication Date:   26 January 1995
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Out of Stock Indefinitely
Availability:   Out of stock   Availability explained

Table of Contents

I Resolution of Singularities.- Desingularisation en dimension 3 et caracteristique p.- 1 Differentes notions de desingularisation.- 2 Premiere reduction.- 3 Deuxieme reduction, construction d'un modele projectif.- 4 Troisieme reduction, birationnel devient projectif.- 5 Final: Morphisme projectif birationnel devient desingularisation.- Sur l'espace des courbes tracees sur une singularite.- 1 Introduction.- 2 Structure pro-algebrique de Tespace des courbes et la fonction de M. Art in d'une singularite.- 3 Families de courbes (selon J. Nash) et desingularisations.- 4 Courbes sur une singularite isolee d'hypersurface.- 5 Courbes lisses sur une singularite de surface.- 6 Deux exemples.- Blowing up acyclic graphs and geometrical configurations.- 1 Introduction.- 2 Basic concepts and notations.- 3 Blowing up acyclic graphs.- 4 Graphic representation of the blowing up for a geometric configuration.- 5 Geometric modification for acyclic graphs.- On a Newton polygon approach to the uniformization of singularities of characteristic p.- 1 Introduction.- 2 Newton polygon and uniformization for ?1 ? n ? 1.- 3 Jumping lemma and Uniformization for ?1 = n ? 2.- 4 The classification of 3-dimensional singularities and uniformization for ?2 ? 3 or ?2 = $${\pi _{\mathop 2\limits^ * }} \geqslant 2$$.- 5 Uniformization for ?2 = 2 and $${\pi _{\mathop 2\limits^ * }}$$ = 1.- 6 Uniformization for ?2 = 1.- Geometry of plane curves via toroidal resolution.- 1 Introduction.- 2 Toric blowing-up and a tower of toric blowing-ups.- 3 Dual Newton diagram and an admissible toric blowing-up.- 4 Resolution complexity.- 5 Characteristic power and Puiseux Pairs.- 6 The Puiseux pairs of normal slice curves.- 7 Geometry of plane curves via a toroidal resolution.- 8 Iterated generic hyperplane section curves.- to the algorithm of resolution.- 1 Introduction.- 2 Stating the problem of resolution of singularities.- 3 Auxiliary result: Idealistic pairs.- 4 Constructive resolutions.- 5 The language of groves and the problem of patching.- 6 Examples.- II Complex Singularities and Differential Systems.- Polarity with respect to a foliation.- 1 Introduction.- 2 Preliminaries on linear systems.- 3 The polarity map.- 4 Plucker's formula.- 5 The net of polars.- 6 Some calculus.- On moduli spaces of semiquasihomogeneous singularities.- 1 Introduction.- 2 Versal -constant deformations and kernel of Kodaira-Spencer map.- 3 Existence of a geometric quotient for fixed Hilbert function of the Tjurina algebra.- 4 The automorphism group of semi Brieskorn singularities.- 5 Problems.- Stratification Properties of Constructible Sets.- 1 Introduction.- 2 Grassmann blowing-up.- 3 Analytically constructible sets.- 4 An application: the Henry-Merle Proposition.- 5 Canonical stratification.- On the linearization problem and some questions for webs in ?2.- 1 Introduction in the form of a survey.- 2 Linearization of webs in (?2,0).- 3 Geometry of the abelian relation space and the linearization problem in the maximum rank case.- 4 Some questions on wrebs in ?2.- Globalization of Admissible Deformations.- 1 Introduction.- 2 Compactification.- 3 Globalization of deformations.- Caracterisation geometrique de l'existence du polynome de Bernstein relatif.- 1 Polynome de Bernstein relatif.- 2 DXxT Module holonome regulier relativement coherent.- Le Polygone de Newton d'un DX-module.- 1 Introduction.- 2 Le cas d'une variable.- 3 La categorie des faisceaux pervers.- 4 Le faisceau d'irregularite et le cycle d'irregularite.- 5 La filtration du faisceau d'irregularite.- 6 Le poly gone de Newton d'un DX-module.- 7 Sur l'existence d'une equation fonctionnelle reguliere.- How good are real pictures?.- 1 Introduction.- 2 Comparison of real and complex discriminants and images.- 3 Codimension 1 germs.- 4 Good real forms and their perturbations.- 5 Bad real pictures.- Weighted homogeneous complete intersections.- 1 Introduction.- 2 Notation.- 3 Ideals and C-equivalence.- 4 Submodules.- 5 K-equivalence.- 6 Combinatorial arguments.- 7 A-equivalence.- 8 Other ground fields.- III Curves and Surfaces.- Degree 8 and genus 5 curves in ?3 and the Horrocks-Mumford bundle.- 1 Construction of curves of degree 8 and genus 5 on a Kummer surface S ? ?3.- 2 Barth's Construction.- 3 A generic curve of degree 8 and genus 5 in ?3.- Irreducible Polynomials of k((X))[Y].- 1 Introduction.- 2 Reduction of the Problem.- 3 Some Maximal Ideals of k?X?[Y].- 4 Irreducibility Criterion for Monic Polynomials of k?X?[Y].- 5 Some Ideas to Compute V[n/2](P).- Examples of Abelian Surfaces with Polarization type (1,3).- 1 Abstract.- 2 Introduction.- 3 Preliminaries.- 4 First examples: products of elliptic curves.- 5 The two-dimensional families of T-invariant quartic surfaces.- 6 The Family FAE.- 7 The Family t?1(L0, 1, 2).- 8 The Family FAB ? TAE.- Semigroups and Clusters at Infinity.- 1 Introduction.- 2 The concept of approximant.- 3 Curves associated to a semigroup.- 4 A family of examples.- Cubic surfaces with double points in positive characteristic.- 1 Introduction.- 2 Two characterizations of rational double points.- 3 Singularities and normal forms.- On the classification of reducible curve singularities.- 1 Reducible curve singularities.- 2 Decomposable curves.- 3 Classification.- 4 Deformations and smoothings.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List