|
![]() |
|||
|
||||
OverviewDie Themen aus Algebra und Diskreter Mathematik, die Informatiker in erster Linie benotigen, finden sich in dieser leicht verstandlichen Einfuhrung. Mathematik wird Studienanfangern als elementares Werkzeug zur Darstellung, Beschreibung, Abstraktion und Symbolisierung vermittelt. Die Bedeutung algebraischer Strukturen in der Kodierungstheorie, in der Automatentheorie und in der Theorie Formaler Sprachen wird in besonderem Masse verdeutlicht. Das Buch enthalt zahlreiche Beispiele und Ubungsaufgaben mit kompletten Losungen. Full Product DetailsAuthor: Klaus DeneckePublisher: Springer Fachmedien Wiesbaden Imprint: Vieweg+Teubner Verlag Edition: 2003 ed. Dimensions: Width: 17.00cm , Height: 1.60cm , Length: 24.00cm Weight: 0.521kg ISBN: 9783519027492ISBN 10: 3519027496 Pages: 297 Publication Date: 29 April 2003 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Language: German Table of Contents1 Grundbegriffe.- 1.1 Zahlenbereiche.- 1.2 Grundbegriffe der Aussagenlogik.- 1.3 Quantifizierte Aussagen.- 1.4 Grundbegriffe der Mengenlehre.- 1.5 Relationen.- 1.6 Funktionen.- 1.7 Aufgaben.- 2 Elemente der Kombinatorik.- 2.1 Permutationen und ihre Verkettung.- 2.2 Variationen von Elementen einer Menge.- 2.3 Kombinationen, binomischer Satz.- 2.4 Aufgaben.- 3 Algebraische Strukturen.- 3.1 Strukturen mit einer binären Operation.- 3.2 Permutationsgruppen.- 3.3 Strukturen mit zwei binären Operationen.- 3.4 Restklassenringe und -körper.- 3.5 Polynomringe.- 3.6 Boolesche Algebren und Verbände.- 3.7 Aufgaben.- 4 Graphentheorie.- 4.1 Grundbegriffe der Graphentheorie.- 4.2 Eulersche und Hamiltonsche Graphen.- 4.3 Bäume und Wälder.- 4.4 Planare Graphen.- 4.5 Färbungen von Graphen.- 4.6 Gruppen und Graphen.- 4.7 Aufgaben.- 5 Lineare Algebra.- 5.1 Lineare Gleichungssysteme.- 5.2 Vektorräume.- 5.3 Matrizen und Determinanten.- 5.4 Hauptsätze für lineare Gleichungssysteme.- 5.5 Geometrische Anwendungen.- 5.6 Vektorräume mit Skalarprodukt.- 5.7 Lineare Abbildungen.- 5.8 Anwendung linearer Abbildungen.- 5.9 Eigenwerte symmetrischer Matrizen.- 5.10 Aufgaben.- 6 Universelle Algebra.- 6.1 Operationen in einer Menge, Algebren.- 6.2 Beispiele.- 6.3 Unteralgebren, Erzeugung.- 6.4 Kongruenzrelationen und Faktoralgebren.- 6.5 Aufgaben.- 7 Homomorphie.- 7.1 Homomorphiesatz.- 7.2 Isomorphiesätze.- 7.3 Aufgaben.- 8 Produkte von Algebren.- 8.1 Direkte Produkte.- 8.2 Subdirekte Produkte.- 8.3 Aufgaben.- 9 Terme und Bäume.- 9.1 Terme und Bäume.- 9.2 Termoperationen.- 9.3 Polynome und Polynomoperationen.- 9.4 Aufgaben.- 10 Identitäten und Varietäten.- 10.1 Die Galoisverbindung (Id, Mod).- 10.2 Vollinvariante Kongruenzrelationen.- 10.3 Die algebraische Folgerungsrelation.- 10.4 Relativ freie Algebren.- 10.5 Varietäten.- 10.6 Der Verband aller Varietäten.- 10.7 Aufgaben.- 11 Anwendungen.- 11.1 Algebren und Automaten.- 11.2 Lateinische Quadrate.- 11.3 Fehlerkorrigierende Codes.- 11.4 Formale Begriffsanalyse.- 11.5 Aufgaben.- Lösung der Aufgaben.ReviewsAuthor InformationProf. Dr. Klaus Denecke, Universität Potsdam Tab Content 6Author Website:Countries AvailableAll regions |