|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Jan-Erik RoosPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 1986 ed. Volume: 1183 Dimensions: Width: 15.50cm , Height: 2.10cm , Length: 23.50cm Weight: 1.280kg ISBN: 9783540164531ISBN 10: 3540164537 Pages: 402 Publication Date: 01 March 1986 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsThrough the looking glass: A dictionary between rational homotopy theory and local algebra.- A rational homotopy analog of Whitehead's problem.- Hilbert series of finitely presented algebras.- On endomorphism rings of canonical modules (joint work with Shiro Goto).- Golod homomorphisms.- On the rates of growth of the homologies of Veronese subrings.- When is the double Yoneda ext-algebra of a local noetherian ring again noetherian?.- On a conjecture of roos.- Two examples of smooth projective varieties with non-zero Massey products.- The radical of ?*(?S)??.- Sur l'operation d'holonomte rationnelle.- Flat families of local, artinian algebras with an infinite number of Poincare series.- A note on intersection multiplicities.- Reducing the Poincare series of local rings to the case of quadratic relations.- The radical of ?*(?S)??, II.- High skeleta of CW complexes.- Matric massey products and formal moduli I.- A method for constructing bad noetherian local rings.- Yet another proof of a result by Ogoma.- Modele minimal relatif des feuilletages.- Lusternik - Schnirelmann category: An introduction.- Series de Bass des modules de syzygie.- On the subalgebra generated by the one-dimensional elements in the Yoneda ext-algebra.- The general extension of a local ring and mixed multiplicities.- Cohomologie de Harrison et type d'homotopie rationnelle.- Cohomologie de l'espace des sections d'un fibre et cohomologie de Gelfand-Fuchs d'une variete.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |