|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: Anthony D. Joseph (University of California, Berkeley) , Blaine Nelson , Benjamin I. P. Rubinstein (University of Melbourne) , J. D. Tygar (University of California, Berkeley)Publisher: Cambridge University Press Imprint: Cambridge University Press Dimensions: Width: 17.80cm , Height: 1.90cm , Length: 25.40cm Weight: 0.840kg ISBN: 9781107043466ISBN 10: 1107043468 Pages: 338 Publication Date: 21 February 2019 Audience: College/higher education , Professional and scholarly , Tertiary & Higher Education , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Available To Order ![]() We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviews'Data Science practitioners tend to be unaware of how easy it is for adversaries to manipulate and misuse adaptive machine learning systems. This book demonstrates the severity of the problem by providing a taxonomy of attacks and studies of adversarial learning. It analyzes older attacks as well as recently discovered surprising weaknesses in deep learning systems. A variety of defenses are discussed for different learning systems and attack types that could help researchers and developers design systems that are more robust to attacks.' Richard Lippmann, Lincoln Laboratory, Massachusetts Institute of Technology 'This is a timely book. Right time and right book, written with an authoritative but inclusive style. Machine learning is becoming ubiquitous. But for people to trust it, they first need to understand how reliable it is.' Fabio Roli, University of Cagliari, Italy Advance praise: 'Data Science practitioners tend to be unaware of how easy it is for adversaries to manipulate and misuse adaptive machine learning systems. This book demonstrates the severity of the problem by providing a taxonomy of attacks and studies of adversarial learning. It analyzes older attacks as well as recently discovered surprising weaknesses in deep learning systems. A variety of defenses are discussed for different learning systems and attack types that could help researchers and developers design systems that are more robust to attacks.' Richard Lippmann, Lincoln Laboratory, Massachusetts Institute of Technology Advance praise: 'This is a timely book. Right time and right book, written with an authoritative but inclusive style. Machine learning is becoming ubiquitous. But for people to trust it, they first need to understand how reliable it is.' Fabio Roli, University of Cagliari, Italy Author InformationAnthony D. Joseph is a Chancellor's Professor in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. He was formerly the Director of Intel Labs Berkeley. Blaine Nelson is a Software Engineer in the Software Engineer in the Counter-Abuse Technologies (CAT) team at Google. He has previously worked at the University of Potsdam and the University of Tübingen. Benjamin I. P. Rubinstein is a Senior Lecturer in Computing and Information Systems at the University of Melbourne. He has previously worked at Microsoft Research, Google Research, Yahoo! Research, Intel Labs Berkeley, and IBM Research. J. D. Tygar is a Professor of Computer Science and a Professor of Information Management at the University of California, Berkeley. Tab Content 6Author Website:Countries AvailableAll regions |