|
![]() |
|||
|
||||
Overview1. I. Gutman, Kragujevac/Yugpslavia Topological Properties of Benzenoid Systems 2. I. Gutman, Kragujevac/Yugoslavia Total Pi-Electron of Benzenoid Hydrocarbons 3. B.N. Cyvin, J. Brunvoll, S.J. Cyvin, Trondheim/Norway Benzenoid Chemical Isomers and Their Enumeration 4. B.N. Cyvin, J. Brunvoll, S.J. Cyvin, Trondheim/Norway Enumeration of Benzenoid Systems and Other Polyhexes Full Product DetailsAuthor: Louis J. Allamandola , Ivan Gutman , J. Brunvoll , Sven J. CyvinPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1990 Volume: 153 Dimensions: Width: 17.00cm , Height: 1.60cm , Length: 24.40cm Weight: 0.528kg ISBN: 9783662150313ISBN 10: 366215031 Pages: 292 Publication Date: 03 October 2013 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsBenzenoid hydrocarbons in space: The evidence and implications.- The distortive tendencies of delocalized ? electronic systems. Benzene, cyclobutadiene and related heteroannulenes.- The spin-coupled valence bond description of benzenoid aromatic molecules.- Semiempirical valence bond views for benzenoid hydrocarbons.- Scaling properties of topological invariants.- Molecular topology and chemical reactivity of polynuclear benzenoid hydrocarbons.- A periodic table for benzenoid hydrocarbons.- Calculating the numbers of perfect matchings and of spanning trees, Pauling's orders, the characteristic polynomial, and the eigenvectors of a benzenoid system.- The existence of Kekulé structures in a benzenoid system.- Peak-valley path method on benzenoid and coronoid systems.- Rapid ways to recognize Kekuléan benzenoid systems.- Methods of enumerating Kekulé structures, exemplified by applications to rectangle-shaped benzenoids.- Clar's aromatic sextet and sextet polynomial.- Caterpillar (Gutman) trees in chemical graph theory.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |