|
![]() |
|||
|
||||
OverviewData science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Full Product DetailsAuthor: Edwin Diday (Universite de Paris IX - Dauphine, France) , Rong Guan , Gilbert Saporta , Huiwen WangPublisher: ISTE Ltd and John Wiley & Sons Inc Imprint: ISTE Ltd and John Wiley & Sons Inc Dimensions: Width: 16.30cm , Height: 2.00cm , Length: 23.90cm Weight: 0.499kg ISBN: 9781786305763ISBN 10: 1786305763 Pages: 258 Publication Date: 14 February 2020 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Out of stock ![]() The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available. Table of ContentsReviewsAuthor InformationEdwin Diday is Emeritus Professor at Paris-Dauphine University-PSL. He helped to introduce the symbolic data analysis paradigm and the dynamic clustering method (opening the path to local models), as well as pyramidal clustering for spatial representation of overlapping clusters. Rong Guan is Associate Professor at the School of Statistics and Mathematics, Central University of Finance and Economics, Beijing. Her research covers complex and symbolic data analysis and financial distress diagnosis. Gilbert Saporta is Emeritus Professor at Conservatoire National des Arts et Métiers, France. His current research focuses on functional data analysis and clusterwise and sparse methods. He is Honorary President of the French Statistical Society. Huiwen Wang is Professor at the School of Economics and Management, Beihang University, Beijing. Her research covers dimension reduction, PLS regression, symbolic data analysis, compositional data analysis, functional data analysis and statistical modeling methods for mixed data. Tab Content 6Author Website:Countries AvailableAll regions |