|
![]() |
|||
|
||||
OverviewAdvances in Biomechanics and Tissue Regeneration covers a wide range of recent development and advances in the fields of biomechanics and tissue regeneration. It includes computational simulation, soft tissues, microfluidics, the cardiovascular system, experimental methods in biomechanics, mechanobiology and tissue regeneration. The state-of-the-art, theories and application are presented, making this book ideal for anyone who is deciding which direction to take their future research in this field. In addition, it is ideal for everyone who is exploring new fields or currently working on an interdisciplinary project in tissue biomechanics. Full Product DetailsAuthor: Mohamed H. Doweidar (Associate Professor, Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain)Publisher: Elsevier Science Publishing Co Inc Imprint: Academic Press Inc Weight: 1.180kg ISBN: 9780128163900ISBN 10: 0128163909 Pages: 430 Publication Date: 14 August 2019 Audience: College/higher education , Tertiary & Higher Education Format: Paperback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsAdvances in Biomechanics and Tissue Regeneration Part I: Biomechanics 1. Personalized corneal biomechanics 2. Biomechanics of the vestibular system: a numerical simulation 3. Design, Simulation and Experimentation of Colonic Stents 4. Mechanical and Micro-Structural Behavior of vascular tissue 5. Impact of Fluid-Structure Interaction Modelling on the human vessel hemodynamics 6. Review of the essential role of SMCs in regulating the stress distribution across the aortic wall 7. Multiscale numerical simulation of the lung and heart electrophysiology 8. Real-time modelling of the heart 9. COMPUTATIONAL MUSCULOSKELETAL BIOMECHANICS OF THE KNEE JOINT 10. Determination of the anisotropic mechanical properties of bone tissue using a homogenization technique combined with meshless methods 11. Analysis of the biomechanical behaviour of osteosynthesis based on intra-medullary nails in femur fractures 12. Stress Redistribution in the Calcaneus After Autologous Bone Harvest Part II: Mechanobiology and tissue regeneration 13. Tissue regeneration through electrically and magnetically active microenvironments 14. USING 3D PRINTING AND BIOPRINTING TECHNOLOGIES FOR PERSONALIZED IMPLANTS 15. Computational Simulation of the Cell Behavior for Tissue Regeneration 16. On the simulation of organ on chip cell processes. Application to an in vitro model of glioblastome evolution 17. Skin mechanobiology and biomechanics: from homeostasis to wound healing 18. Cartilage Regeneration and Tissue Engineering 19. Impact of mechanobiological perturbation on cartilage tissue engineering 20. Biomechanical analysis of bone tissue after insertion of dental implants using meshless methods: stress analysis and osseointegration 21. Numerical assessment of bone tissue remodelling of a proximal femur after insertion of a femoral implant using an interpolating meshless methodReviewsAuthor InformationHe is a Full Associate Professor at the Mechanical Engineering Department, University of Zaragoza, Spain (25 years of teaching experience). Besides, he is a Member of the Group of Applied Mechanics and Bioengineering (AMB), the Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), the Aragón Institute of Engineering Research (I3A), and the European Society of Biomechanics (ESB). He received his B.Eng. in industrial engineering (1993) from Benha Higher Institute of Technology, Egypt; B.Sc. in statistical and computer science (1997) from Mansoura University, Egypt; M.Sc. degree in Engineering Mathematics (2001) from Ain Shams University, Egypt; a Diploma in Advanced Studies in Computational Fluid Mechanics (2004) from Zaragoza University, Spain; and his Ph.D. degree in Computational Fluid Mechanics (2005) from Zaragoza University, Spain. Dr. Doweidar has participated and/or directed more than 25 national and international investigation projects. In addition, he is the author and co-author of more than 110 publications in peer-reviewed articles, books, book chapters, and conferences. His investigation interests include Computational Biomechanics, Cell Simulation, Hyperelastic Materials, Large Deformations, Finite Element Method, Natural Element Method, Computational Fluid Dynamics, Error Estimation, and Adaptivity. Tab Content 6Author Website:Countries AvailableAll regions |