|
![]() |
|||
|
||||
Overview""Advances in Bio-inspired Combinatorial Optimization Problems"" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems. Full Product DetailsAuthor: Camelia-Mihaela PinteaPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: 2014 ed. Volume: 57 Dimensions: Width: 15.50cm , Height: 1.50cm , Length: 23.50cm Weight: 4.262kg ISBN: 9783642401787ISBN 10: 3642401783 Pages: 188 Publication Date: 20 August 2013 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand ![]() We will order this item for you from a manufactured on demand supplier. Table of ContentsPart I Biological Computing and Optimization.- Part II Ant Algorithms.- Part III Bio-inspired Multi-Agent Systems.- Part IV Applications with Bio-inspired Algorithms.- Part V Conclusions and Remarks.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |