Advanced Graph Theory and Combinatorics

Author:   Michel Rigo
Publisher:   ISTE Ltd and John Wiley & Sons Inc
ISBN:  

9781848216167


Pages:   296
Publication Date:   13 December 2016
Format:   Hardback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $295.95 Quantity:  
Add to Cart

Share |

Advanced Graph Theory and Combinatorics


Add your own review!

Overview

Advanced Graph Theory focuses on some of the main notions arising in graph theory with an emphasis from the very start of the book on the possible applications of the theory and the fruitful links existing with linear algebra. The second part of the book covers basic material related to linear recurrence relations with application to counting and the asymptotic estimate of the rate of growth of a sequence satisfying a recurrence relation.

Full Product Details

Author:   Michel Rigo
Publisher:   ISTE Ltd and John Wiley & Sons Inc
Imprint:   ISTE Ltd and John Wiley & Sons Inc
Dimensions:   Width: 16.50cm , Height: 2.30cm , Length: 24.10cm
Weight:   0.572kg
ISBN:  

9781848216167


ISBN 10:   1848216165
Pages:   296
Publication Date:   13 December 2016
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

Foreword  ix Introduction xi Chapter 1. A First Encounter with Graphs  1 1.1. A few definitions  1 1.1.1. Directed graphs  1 1.1.2. Unoriented graphs 9 1.2. Paths and connected components  14 1.2.1. Connected components  16 1.2.2. Stronger notions of connectivity 18 1.3. Eulerian graphs  23 1.4. Defining Hamiltonian graphs 25 1.5. Distance and shortest path  27 1.6. A few applications 30 1.7. Comments 35 1.8. Exercises  37 Chapter 2. A Glimpse at Complexity Theory 43 2.1. Some complexity classes 43 2.2. Polynomial reductions 46 2.3. More hard problems in graph theory 49 Chapter 3. Hamiltonian Graphs 53 3.1. A necessary condition 53 3.2. A theorem of Dirac  55 3.3. A theorem of Ore and the closure of a graph  56 3.4. Chvátal’s condition on degrees  59 3.5. Partition of Kn into Hamiltonian circuits  62 3.6. De Bruijn graphs and magic tricks  65 3.7. Exercises  68 Chapter 4. Topological Sort and Graph Traversals  69 4.1. Trees  69 4.2. Acyclic graphs 79 4.3. Exercises  82 Chapter 5. Building New Graphs from Old Ones  85 5.1. Some natural transformations  85 5.2. Products  90 5.3. Quotients  92 5.4. Counting spanning trees  93 5.5. Unraveling 94 5.6. Exercises  96 Chapter 6. Planar Graphs 99 6.1. Formal definitions 99 6.2. Euler’s formula 104 6.3. Steinitz’ theorem  109 6.4. About the four-color theorem 113 6.5. The five-color theorem  115 6.6. From Kuratowski’s theorem to minors  120 6.7. Exercises  123 Chapter 7. Colorings  127 7.1. Homomorphisms of graphs  127 7.2. A digression: isomorphisms and labeled vertices  131 7.3. Link with colorings  134 7.4. Chromatic number and chromatic polynomial 136 7.5. Ramsey numbers  140 7.6. Exercises  147 Chapter 8. Algebraic Graph Theory  151 8.1. Prerequisites  151 8.2. Adjacency matrix 154 8.3. Playing with linear recurrences  160 8.4. Interpretation of the coefficients 168 8.5. A theorem of Hoffman  169 8.6. Counting directed spanning trees 172 8.7. Comments 177 8.8. Exercises  178 Chapter 9. Perron–Frobenius Theory 183 9.1. Primitive graphs and Perron’s theorem 183 9.2. Irreducible graphs 188 9.3. Applications  190 9.4. Asymptotic properties 195 9.4.1. Canonical form  196 9.4.2. Graphs with primitive components 197 9.4.3. Structure of connected graphs 206 9.4.4. Period and the Perron–Frobenius theorem 214 9.4.5. Concluding examples 218 9.5. The case of polynomial growth  224 9.6. Exercises  231 Chapter 10. Google’s Page Rank  233 10.1. Defining the Google matrix 238 10.2. Harvesting the primitivity of the Google matrix  241 10.3. Computation 246 10.4. Probabilistic interpretation 246 10.5. Dependence on the parameter α  247 10.6. Comments 248 Bibliography 249 Index  263

Reviews

Author Information

Michel RIGO, Full professor, University of Liège, Department of Math., Belgium.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

MRG2025CC

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List