|
|
|||
|
||||
OverviewVolume II - Advanced Deep Learning with Modern C++ Architecting, Training, and Deploying Neural Systems with PyTorch C++, Flashlight, and ONNX Master the cutting edge of high-performance deep learning engineering with Modern C++. This advanced volume takes you far beyond Python workflows, showing you how to design, optimize, and deploy neural systems directly in C++ using PyTorch's C++ API, Facebook's Flashlight framework, and ONNX Runtime. From classic architectures like CNNs and RNNs to state-of-the-art Transformers, you'll learn how to implement, train, and fine-tune models with full control over memory, performance, and execution. The book explores mixed-precision training, model quantization, distributed training strategies, and advanced optimization techniques tailored for production-grade systems. You'll also build complete inference pipelines, mastering ONNX export, runtime integration, CUDA acceleration, cuDNN optimizations, and TensorRT deployment for real-time, low-latency applications. Every chapter is designed to help experienced developers engineer deep learning systems that are fast, scalable, and production ready. Keywords: deep learning with C++, PyTorch C++ frontend, neural network engineering, ONNX Runtime, Flashlight AI, CUDA optimization, Transformer models, CNNs, RNNs, model quantization, TensorRT deployment, GPU computing, high-performance AI systems. Full Product DetailsAuthor: Min Jae-LinPublisher: Independently Published Imprint: Independently Published Volume: 2 Dimensions: Width: 17.80cm , Height: 1.10cm , Length: 25.40cm Weight: 0.367kg ISBN: 9798273859401Pages: 208 Publication Date: 10 November 2025 Audience: General/trade , General Format: Paperback Publisher's Status: Active Availability: Available To Order We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately. Table of ContentsReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |
||||