Advanced Analysis: on the Real Line

Author:   R. Kannan ,  Carole K. Krueger
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
ISBN:  

9780387946429


Pages:   260
Publication Date:   29 May 1996
Format:   Paperback
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Our Price $158.27 Quantity:  
Add to Cart

Share |

Advanced Analysis: on the Real Line


Overview

The goal of this book is to provide an extensive collection of results which generalize classical real analysis. Besides discussing density, approximate continuity, and approximate derivatives in detail, culminating with the Denjoy-Saks-Young Theorem, the authors also present an interesting example due to Ruziewicz on an infinite number of functions with the same derivative (not everywhere finite) but the difference of any two is not a constant and Sierpinski's theorem on the extension of approximate continuity to nonmeasurable functions. There is also a chapter on monotonic functions and one dealing with the Tonelli-Goldowsky result of the weakening of the hypotheses on a function f such that f'r > - < f is increasing. The latter part of the book deals with functions of bounded variation and approximately continuous functions. Finally there is an exhaustive chapter on the generalized Cantor sets and Cantor functions. The bibliography is extensive and a great variety of exercises serves to clarify and sometimes extend the results presented in the text.

Full Product Details

Author:   R. Kannan ,  Carole K. Krueger
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1996
Dimensions:   Width: 15.50cm , Height: 1.90cm , Length: 23.50cm
Weight:   0.795kg
ISBN:  

9780387946429


ISBN 10:   038794642
Pages:   260
Publication Date:   29 May 1996
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Out of stock   Availability explained
The supplier is temporarily out of stock of this item. It will be ordered for you on backorder and shipped when it becomes available.

Table of Contents

0 Preliminaries.- 0.1 Lebesgue Measure.- 0.2 The Lebesgue Integral.- 0.3 Vitali Covering Theorem.- 0.4 Baire Category Theorem and Baire Class Functions.- 1 Monotone Functions.- 1.1 Continuity Properties.- 1.2 Differentiability Properties.- 1.3 Reconstruction of f from f?.- 1.4 Series of Monotone Functions.- Exercises.- 2 Density and Approximate Continuity.- 2.1 Preliminaries and Definitions.- 2.2 The Lebesgue Density Theorem.- 2.3 Approximate Continuity.- 2.4 Approximate Continuity and Integrability.- 2.5 Further Results on Approximate Continuity.- 2.6 Sierpinski’s Theorem.- 2.7 The Darboux Property and the Density Topology.- Exercises.- 3 Dini Derivatives.- 3.1 Preliminaries and Definitions.- 3.2 Simple Properties of Derivatives.- 3.3 Ruziewicz’s Example.- 3.4 Further Properties of Derivatives.- 3.5 The Denjoy-Saks-Young Theorem.- 3.6 Measurability of Dini Derivatives.- 3.7 Dini Derivatives and Convex Functions.- Exercises.- 4 Approximate Derivatives.- 4.1 Definitions.- 4.2 Measurability of Approximate Derivatives.- 4.3 Analogue of the Denjoy-Saks-Young Theorem.- 4.4 Category Results for Approximate Derivatives.- 4.5 Other Properties of Approximate Derivatives.- Exercises.- 5 Additional Results on Derivatives.- 5.1 Derivatives.- 5.2 Derivates.- 5.3 Approximate Derivatives.- 5.4 The Denjoy Property.- 5.5 Metrically Dense.- 6 Bounded Variation.- 6.1 Bounded Variation of Finite Intervals.- 6.2 Stieltjes Integral.- 6.3 The Space BV[a,b].- BVloc and L1loc.- 6.5 Additional Remarks on Fubini’s Theorem.- Exercises.- 7 Absolute Continuity.- 7.1 Absolute Continuity.- 7.2 Rectifiable Curves.- Exercises.- 8 Cantor Sets and Singular Functions.- 8.1 The Cantor Ternary Set and Function.- 8.2 Hausdorff Measure.- 8.3 Generalized Cantor Sets—Part I.- 8.4 Generalized CantorSets—Part II.- 8.5 Cantor-like Sets.- 8.6 Strictly Increasing Singular Functions.- Exercises.- 9 Spaces of BV and AC Functions.- 9.1 Convergence in Variation.- 9.2 Convergence in Length.- 9.3 Norms on AC.- 9.4 Norms on BV.- 10 Metric Separability.- Exercises.

Reviews

Author Information

Tab Content 6

Author Website:  

Countries Available

All regions
Latest Reading Guide

NOV RG 20252

 

Shopping Cart
Your cart is empty
Shopping cart
Mailing List