|
![]() |
|||
|
||||
OverviewFull Product DetailsAuthor: S. LangPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: 1st ed. 1959. 2nd printing 1983 Dimensions: Width: 15.50cm , Height: 1.40cm , Length: 23.50cm Weight: 0.850kg ISBN: 9780387908755ISBN 10: 0387908757 Pages: 256 Publication Date: 06 September 1983 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print ![]() This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsI Algebraic Groups.- 1. Groups, subgroups, and factor groups.- 2. Intersections and Pontrjagin products.- 3. The field of definition of a group variety.- II General Theorems on Abelian Varieties.- 1. Rational maps of varieties into abelian varieties.- 2. The Jacobian variety of a curve.- 3. The Albanese variety.- III The Theorem of the Square.- 1. Algebraic equivalence.- 2. The theorem of the cube and the theorem of the square.- 3. The theorem of the square for groups.- 4. The kernel in the theorem of the square.- IV Divisor Classes on an Abelian Variety.- 1. Applications of the theorem of the square to abelian varieties.- 2. The torsion group.- 3. Numerical equivalence.- 4. The Picard variety of an abelian variety.- V Functorial Formulas.- 1. The transpose of a homomorphism.- 2. A list of formulas and commutative diagrams.- 3. The involutions.- VI The Picard Variety of an Arbitrary Variety.- 1. Construction of the Picard variety.- 2. Divisorial correspondences.- 3. Application to the theory of curves.- 4. Reciprocity and correspondences.- VII The l-Adic Representations.- 1. The l-adic spaces.- 2. Dual representations.- VIII Algebraic Systems of Abelian Varieties.- 1. The K/k-image.- 2. The generic hyperplane section.- 3. The K/k-trace.- 4. The transpose of an exact sequence.- 5. Duality between image and trace.- 6. Exact sequences of varieties.- Appendix Composition of Correspondences.- 1. Inverse images.- 2. Divisorial correspondences.- Table of Notation.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |